【考研类试卷】考研数学三(概率统计)-试卷11及答案解析.doc
《【考研类试卷】考研数学三(概率统计)-试卷11及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(概率统计)-试卷11及答案解析.doc(7页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(概率统计)-试卷 11 及答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:5,分数:10.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 X 和 Y 分别表示扔 n 次硬币出现正面和反面的次数,则 X,Y 的相关系数为( )(分数:2.00)A.一 1B.0C.D.13.设随机变量 XU一 1,1,则随机变量 U=arcsinX,V=arccosX 的相关系数为( )(分数:2.00)A.一 1B.0C.D.14.对于随机变量 X 1 ,X 2 ,X n ,下列说法不正确的是( )(分数:2.00)A.若 X 1
2、 ,X 2 ,X n 两两不相关,则 D(X 1 +X 2 +X n )= B.若 X 1 ,X 2 ,X n 相互独立,则 D(X 1 +X 2 +X n )=D(X 1 )+D(X 2 )+D(X n )C.若 X 1 ,X 2 ,X n 相互独立同分布,服从 N(0,02),则 D.若 D(X 1 +X 2 +X n )一 D(x1)+D(X2)+D(X),则 X 1 ,X 2 ,X n 两两不相关5.设(X,Y)服从二维正态分布,其边缘分布为 XN(1,1),YN(2,4),X,Y 的相关系数为 XY =一05,且 P(aX+bY1)=05,则( ) (分数:2.00)A.B.C.D.
3、二、填空题(总题数:5,分数:10.00)6.设随机变量 x 与 y 的相关系数为 (分数:2.00)填空项 1:_7.设随机变量 X 的密度函数为 f(x)= (分数:2.00)填空项 1:_8.设 X 的分布函数为 F(x)= (分数:2.00)填空项 1:_9.设随机变量 X 的密度函数为 f(c)= (分数:2.00)填空项 1:_填空项 1:_10.设随机变量 XP(),且 E(X 一 1)(X 一 2)=1,则 = 1(分数:2.00)填空项 1:_三、解答题(总题数:17,分数:34.00)11.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_12.设每次试验成
4、功的概率为 02,失败的概率为 08,设独立重复试验直到成功为止的试验次数为 X,则 E(X)=_(分数:2.00)_13.n 把钥匙中只有一把可以把门打开,现从中任取一把开门,直到打开门为止,针对下列两种情况分别求开门次数的数学期望和方差:(1)试开过的钥匙除去; (2)试开过的钥匙重新放回(分数:2.00)_14.设一部机器一天内发生故障的概率为 (分数:2.00)_15.设由自动生产线加工的某种零件的内径 X(单位:毫米)服从正态分布 N(,1),内径小于 10 或大于12 为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润 T(单位:元)与销售零件的内径 X
5、有如下关系: (分数:2.00)_16.某商店经销某种商品,每周进货数量 X 与顾客对该种商品的需求量 Y 之间是相互独立的,且都服从10,20上的均匀分布商店每出售一单位商品可获利 1 000 元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利 500 元,计算此商店经销该种商品每周所得利润的期望值(分数:2.00)_17.设随机变量 X,Y 相互独立,且 X (分数:2.00)_18.设随机变量 X 服从参数为 2 的指数分布,令 U= (分数:2.00)_19.设有 20 人在某 11 层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互
6、独立,求电梯停的次数的数学期望(分数:2.00)_20.设随机变量 X 的密度函数为 f(x)= (分数:2.00)_21.设二维随机变量(X,Y)服从二维正态分布,且 XN(1,3 2 ),YN(0,4 2 ),且 X,Y 的相关系数为 (分数:2.00)_22.设随机变量(X,Y)在区域 D=(x,y)0x2,0y1)上服从均匀分布,令 (分数:2.00)_23.设随机变量 X 1 ,X 2 ,X m+n (mn)独立同分布,其方差为 2 ,令 Y= (分数:2.00)_24.设 X 1 ,X 2 ,X n (n2)相互独立且都服从 N(0,1),Y i =X i (分数:2.00)_25
7、.设随机变量 X,Y 相互独立且都服从 N(, 2 )分布,令 Z=max(X,Y),求 E(Z)(分数:2.00)_26.设随机变量 X 1 ,X 2 ,X n 相互独立且在0,a上服从均匀分布,令 U=maxX 1 ,X 2 ,X n ,求 U 的数学期望与方差(分数:2.00)_27.电信公司将 n 个人的电话资费单寄给 n 个人,但信封上各收信人的地址随机填写,用随机变量 X 表示收到自己电话资费单的人的个数,求 E(X)及 D(X)(分数:2.00)_考研数学三(概率统计)-试卷 11 答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:5,分数:10.00)1.选
8、择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 X 和 Y 分别表示扔 n 次硬币出现正面和反面的次数,则 X,Y 的相关系数为( )(分数:2.00)A.一 1 B.0C.D.1解析:解析:设正面出现的概率为 P,则 XB(n,p),Y=n 一 XB(n,1 一 p), E(X)=np,D(X)=np(1 一p),E(Y)=n(1 一 p),D(Y)=np(1 一 p), Cov(X,Y)=Cov(X,n-X)=Cov(X,n)一 Cov(X,X), 因为Cov(X,n)=E(nX)一 E(n)E(X)=nE(X)一 nE(X)=0, Cov(X,X
9、)=D(x)=np(1 一 p),所以 XY = 3.设随机变量 XU一 1,1,则随机变量 U=arcsinX,V=arccosX 的相关系数为( )(分数:2.00)A.一 1 B.0C.D.1解析:解析:当 PY=aX+b=1(a0)时, XY =1;当 PY=aX+b)=1(a0)时, XY =一 1 因为arcsinx+arccosx= 4.对于随机变量 X 1 ,X 2 ,X n ,下列说法不正确的是( )(分数:2.00)A.若 X 1 ,X 2 ,X n 两两不相关,则 D(X 1 +X 2 +X n )= B.若 X 1 ,X 2 ,X n 相互独立,则 D(X 1 +X 2
10、 +X n )=D(X 1 )+D(X 2 )+D(X n )C.若 X 1 ,X 2 ,X n 相互独立同分布,服从 N(0,02),则 D.若 D(X 1 +X 2 +X n )一 D(x1)+D(X2)+D(X),则 X 1 ,X 2 ,X n 两两不相关 解析:解析:若 X 1 ,X 2 ,X n 相互独立,则 B,C 是正确的,若 X 1 ,X 2 ,X n 两两不相关,B,C 是正确的,若 X 1 ,X 2 ,X n 两两不相关, 则 A 是正确的,选 D5.设(X,Y)服从二维正态分布,其边缘分布为 XN(1,1),YN(2,4),X,Y 的相关系数为 XY =一05,且 P(a
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 概率 统计 11 答案 解析 DOC
