2018_2019学年九年级数学下册第26章二次函数26.2二次函数的图象与性质26.2.2.5二次函数最值的应用同步练习(新版)华东师大版.doc
《2018_2019学年九年级数学下册第26章二次函数26.2二次函数的图象与性质26.2.2.5二次函数最值的应用同步练习(新版)华东师大版.doc》由会员分享,可在线阅读,更多相关《2018_2019学年九年级数学下册第26章二次函数26.2二次函数的图象与性质26.2.2.5二次函数最值的应用同步练习(新版)华东师大版.doc(4页珍藏版)》请在麦多课文档分享上搜索。
1、1262 二次函数的图象与性质2二次函数 yax 2bxc 的图象与性质第 5课时 二次函数最值的应用知|识|目|标1经过阅读、探究、讨论交流,能列出几何图形中两个变量之间的二次函数关系,并求出其最大值或最小值2在理解二次函数性质的基础上,通过对具体问题的分析、操作,能用二次函数知识求出实际问题中的最值3通过对实际问题中二次函数图象的绘制、观察与分析,能求出自变量取值受限制的二次函数的最值目标一 能用二次函数模型解决几何图形中的最值例 1 教材补充例题 如图 2624,在 Rt ABC中, C90, BC4, AC8,点 D在斜边 AB上,过点 D作 DE AC, DF BC,垂足分别为 E,
2、 F,得到四边形 DECF,设DE x, DF y.(1)用含 y的代数式表示 AE;(2)求 y与 x之间的函数关系式,并求出 x的取值范围;(3)设四边形 DECF的面积为 S,求 S与 x之间的函数关系式,并求出 S的最大值图 26242【归纳总结】用二次函数模型解决几何最值问题的 “三部曲”:(1)认真审题,联想几何图形的性质(包括图形面积、体积、周长,以及等腰三角形、直角三角形、全等三角形、相似三角形的性质等);(2)用已知条件和图形的性质列出问题中两个变量之间的二次函数关系式;(3)根据二次函数的性质求出所列关系式的最值,从而解决原问题目标二 能用二次函数模型解决实际问题中的最值例
3、 2 高频考题 某杂技团用 68米长的幕布围成一个矩形临时场地,并留出 2米作为出入口,设矩形的长为 x米,面积为 y平方米(1)求 y与 x之间的函数关系式(不要求写出自变量的取值范围);(2)由于表演需要,矩形的长不小于 18 米,求能围成的矩形的最大面积【归纳总结】用二次函数求实际问题中的最值:(1)在实际问题中,列出函数关系式后,一般要考虑自变量的取值范围;(2)先确定二次函数图象的顶点的横坐标是否在自变量的取值范围内,再应用二次函数的性质确定最值目标三 能求自变量的取值受限制的二次函数的最值例 3 教材补充例题 (1)已知 0 x1,那么函数 y2 x28 x6 的最大值是( )A6
4、 B0 C2 D4(2)函数 y x22 x3(2 x2)的最大值和最小值分别是( )A4 和3 B3 和4C5 和4 D1 和4【归纳总结】确定自变量的取值受限制的二次函数的最值:(1)根据函数关系式求最值:当自变量在某个范围内取值时,要分别求出顶点和函数端点处的函数值,比较这些函数值,并结合自变量的取值范围,从而得出最值(2)根据图象求最值:可以画出此函数完整的图象(虚线),将在自变量的取值范围内的部分画成实线,函数在实线的最高点处取得最大值,在最低点处取得最小值知识点 二次函数 yax 2bxc 的最值3(1)二次函数 yax 2bxc 的最值有两种求法:配方法:将 yax 2bxc 配
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 _2019 学年 九年级 数学 下册 26 二次 函数 262 图象 性质 26225 应用 同步 练习 新版 华东师大 DOC

链接地址:http://www.mydoc123.com/p-1125234.html