2020版高考数学一轮复习高考大题专项五直线与圆锥曲线压轴大题课件理北师大版.pptx
《2020版高考数学一轮复习高考大题专项五直线与圆锥曲线压轴大题课件理北师大版.pptx》由会员分享,可在线阅读,更多相关《2020版高考数学一轮复习高考大题专项五直线与圆锥曲线压轴大题课件理北师大版.pptx(57页珍藏版)》请在麦多课文档分享上搜索。
1、高考大题专项五 直线与圆锥曲线压轴大题,考情分析,必备知识,从近五年的高考试题来看,圆锥曲线问题在高考中属于必考内容,并且常常在同一份试卷上多题型考查.对圆锥曲线的考查在解答题部分主要体现以下考法:第一问一般是先求圆锥曲线的方程或离心率等较基础的知识;第二问往往涉及定点、定值、最值、取值范围等探究性问题,解决此类问题的关键是通过联立方程来解决.,考情分析,必备知识,1.直线与圆锥曲线的位置关系 (1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+B
2、y+C=0,圆锥曲线方程为f(x,y)=0.,若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合). 若a0,设=b2-4ac. 当0时,直线和圆锥曲线交于不同的两点; 当=0时,直线和圆锥曲线相切于一点; 当0时,直线和圆锥曲线没有公共点.,考情分析,必备知识,考情分析,必备知识,4.求解圆锥曲线标准方程的方法是“先定型,后计算” (1)定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程. (2)计算,就是利用待定系数法求出方程中的a2,b2或p.另外,当焦点位置无法确定时,椭圆常设为mx2+ny2=1(m0,
3、n0),双曲线常设为mx2-ny2=1(mn0),抛物线常设为y2=2ax或x2=2ay(a0). (3)椭圆与双曲线的方程形式上可统一为Ax2+By2=1,其中A,B是不相等的常数,当AB0时,表示焦点在y轴上的椭圆;当BA0时,表示焦点在x轴上的椭圆;当AB0时,表示双曲线.,考情分析,必备知识,5.通径:过椭圆、双曲线、抛物线的焦点垂直于焦点所在坐标轴的弦称为通径,椭圆与双曲线的通径长为 ,过椭圆焦点的弦中通径最短;抛物线通径长是2p,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a+c,最短距离为a-c. 6.定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的
4、量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点.解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.,考情分析,必备知识,-8-,题型一,题型二,题型三,圆锥曲线中的最值、范围、证明问题 题型一 圆锥曲线中的最值问题 突破策略 函数最值法,(1)求椭圆C的方程; (2)若F,B1分别是椭圆C的右焦点、上顶点,点M(不同于右焦点F)在x轴正半轴上,且满足B1OFMOB1(O为坐标原点),点B在y轴上,点M关于点F的对称点是点A,点P为椭圆C上一动点,且满足|AB|=
5、|PB|,求AOB的周长的最小值.,-9-,题型一,题型二,题型三,-10-,题型一,题型二,题型三,-11-,题型一,题型二,题型三,-12-,题型一,题型二,题型三,解题心得圆锥曲线中的有关平面几何图形面积的最值问题,通过某一变量表示出图形的面积的函数表达式,转化为函数的最值问题,然后求导确定函数单调性求最值,或利用基本不等式,或利用式子的几何意义求最值.,-13-,题型一,题型二,题型三,难点突破第一问根据题中条件,利用椭圆的定义以及性质,求得a,c的大小,再根据椭圆中a,b,c的关系,求得b的值,从而求得椭圆的方程,第二问根据题中的条件,可以确定四边形AMBF1是平行四边形,应用面积公
6、式求得结果.,-14-,题型一,题型二,题型三,-15-,题型一,题型二,题型三,题型二 圆锥曲线中的范围问题(多维探究) 突破策略一 条件转化法 例2(2018山西榆社中学三模,20)已知曲线M由抛物线x2=-y及抛物线x2=4y组成,直线l:y=kx-3(k0)与曲线M有m(mN)个公共点. (1)若m3,求k的最小值; (2)若m=4,自上而下记这4个交点分别为A,B,C,D,求 的取值范围.,-16-,题型一,题型二,题型三,-17-,题型一,题型二,题型三,难点突破(1)根据题意知曲线M由抛物线x2=-y及抛物线x2=4y组成,故联立x2=-y与y=kx-3,得出交点个数,因为直线l
7、:y=kx-3(k0)与曲线M有m(mN)个公共点,且m3,所以再联立x2=4y与y=kx-3,得出交点个数,综合两个结论即得出结论. (2)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),根据弦长公式求出AB和CD,然后求出 的表达式,建立关于k的不等式组,根据函数思维求出最值即可得出范围.,解题心得求某一量的取值范围,要看清与这个量有关的条件有几个,有几个条件就可转化为几个关于这个量的不等式,解不等式取交集得结论.,-18-,题型一,题型二,题型三,对点训练2(2018贵州黔东南州一模,20)已知椭圆C:(ab0)的左、右焦点分别为F1、F2,上顶点为A.动直线l
8、:x-my-1=0(mR)经过点F2,且AF1F2是等腰直角三角形. (1)求椭圆C的标准方程; (2)设直线l交C于M,N两点,若点A在以线段MN为直径的圆外,求实数m的取值范围.,-19-,题型一,题型二,题型三,-20-,题型一,题型二,题型三,突破策略二 构造函数法,-21-,题型一,题型二,题型三,-22-,题型一,题型二,题型三,-23-,题型一,题型二,题型三,解题心得在求直线与圆锥曲线的综合问题中,求与直线或与圆锥曲线有关的某个量d的取值范围问题,依据已知条件建立关于d的函数表达式,转化为求函数值的取值范围问题,然后利用函数的方法或解不等式的方法求出d的取值范围.,-24-,题
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 一轮 复习 专项 直线 圆锥曲线 压轴 课件 北师大 PPTX
