SAE AIR 1343B-2013 Liquid Propellant Gas Generation Systems《液体推进剂气体发生系统》.pdf
《SAE AIR 1343B-2013 Liquid Propellant Gas Generation Systems《液体推进剂气体发生系统》.pdf》由会员分享,可在线阅读,更多相关《SAE AIR 1343B-2013 Liquid Propellant Gas Generation Systems《液体推进剂气体发生系统》.pdf(53页珍藏版)》请在麦多课文档分享上搜索。
1、 _ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising ther
2、efrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions. Copyright 2013 SAE International All rights reserved. No part of this
3、publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-49
4、70 (outside USA) Fax: 724-776-0790 Email: CustomerServicesae.org SAE WEB ADDRESS: http:/www.sae.org SAE values your input. To provide feedback on this Technical Report, please visit http:/www.sae.org/technical/standards/AIR1343BAEROSPACE INFORMATION REPORT AIR1343 REV. B Issued 1981-11 Revised 1992-
5、03 Reaffirmed 2007-11 Stabilized 2013-06Superseding AIR1343A Liquid Propellant Gas Generation Systems RATIONALE This document has been determined to contain basic and stable technology which is not dynamic in nature. STABILIZED NOTICE This document has been declared “Stabilized“ by the A-6C6 Power S
6、ources Committee, and will no longer be subjected to periodic reviews for currency. Users are responsible for verifying references and continued suitability of technical requirements. Newer technology may exist. Copyright SAE International Provided by IHS under license with SAENot for ResaleNo repro
7、duction or networking permitted without license from IHS-,-,-TABLE OF CONTENTS1. SCOPE .42. REFERENCES .43. SYSTEM CONSIDERATIONS74. LIQUID PROPELLANTS.84.1 Monopropellants 84.2 Bipropellants 154.3 Safety and Handling.155. PROPELLANT TANKS.155.1 Positive Expulsion Devices 175.1.1 Elastomeric Bladder
8、s .175.1.2 Metallic Bladders175.1.3 Bellows Tanks 175.1.4 Piston Tanks 186. PROPELLANT EXPULSION SYSTEMS 186.1 Stored Pressurized Gas System 186.1.1 Pressurization Gas.196.1.2 Pressurant Storage Bottle196.1.3 Pressurization Gas Valve.206.1.4 Pressurant Regulator .206.1.5 Advantages and Disadvantages
9、 206.2 Propellant Pump 216.2.1 Positive Displacement Propellant Pump 216.2.2 Hydrodynamic Fuel Pump21SAE AIR1343B Page 1 of 52_ Copyright SAE International Provided by IHS under license with SAENot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TABLE OF CONTENTS (Cont
10、inued)6.2.3 Advantages and Disadvantages of Pumps 236.3 Solid Propellant Gas Pressurization.236.3.1 Advantages and Disadvantages of Solid Propellant Pressurization 246.4 Differential Area Piston Fuel Tank Gas Generator System246.4.1 Advantages and Disadvantages 266.5 Cryogenic Storage .266.6 Hyperbo
11、lic Propellant Injection.287. PROPELLANT CONTROLS .297.1 Pressure Modulated Control 297.2 Pulse Modulated Control318. DECOMPOSITION (COMBUSTION) CHAMBER AND INITIATION SYSTEM 318.1 Monopropellant Decomposition Chamber318.1.1 Solid Propellant Initiators .328.1.2 Hyperbolic Start Systems.328.1.3 Therm
12、al Start Systems.358.1.4 Catalytic Initiators.358.2 Bipropellant Combustion Chamber 378.2.1 Hyperbolic Combustion378.2.2 Spark Ignitions .379. SIZING METHODS.389.1 Propellant Consumption.389.1.1 Specific Propellant Consumption (SPC) 399.1.2 Part Load Propellant Consumption 399.1.3 Specific Impulse (
13、ISP).409.1.4 Characteristic Exhaust Velocity (C*) 409.2 Propellant Tank Sizing .409.2.1 Spherical Tank .419.2.2 Cylindrical Tank429.3 Propellant Expulsion System Sizing.459.3.1 Cold Gas Expulsion .459.3.2 Solid Propellant Gas Generator Expulsion System479.4 Decomposition Chamber Sizing.52TABLE 1 Mon
14、opropellant Characteristics9TABLE 2 Constituents of Hydrazine Blends With Depressed Freezing Points .12TABLE 3 Physical and Chemical Properties of Hydrazine Monopropellants.13TABLE 4 Typical Bipropellant Characteristics .16TABLE 5 Characteristics of Typical Propellant51SAE AIR1343B Page 2 of 52_ Cop
15、yright SAE International Provided by IHS under license with SAENot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TABLE OF CONTENTS (Continued)FIGURE 1 LPGG System Block Diagram.4FIGURE 2 Freezing Point Versus Percent H2O in N2H4/H2O Blend 11FIGURE 3 Storage Data on H
16、ydrazine Blends.14FIGURE 4 Pressurized Propellant Expulsion System Block Diagram 18FIGURE 5 Pumped Propellant System.22FIGURE 6 Solid Propellant Expulsion System .23FIGURE 7 Variable Demand Prepackaged Gas Generator .25FIGURE 8 Supercritical Storage System26FIGURE 9 Subcritical Storage System .27FIG
17、URE 10 Hyperbolic Propellant Injection System.28FIGURE 11 Speed Control Systems Pulse and Pressure Modulated 30FIGURE 12 Solid Propellant Dual Start System .33FIGURE 13 Solid Oxidizer Decomposition Chamber .34FIGURE 14 Liquid Oxidizer Injection Systems .36FIGURE 15 Cylindrical Tank.42FIGURE 16 Cylin
18、drical Tank (Convex and Concave).43FIGURE 17 Grain Size .48FIGURE 18 Burning Rate and KnVersus Pressure Typical Propellant 50SAE AIR1343B Page 3 of 52_ Copyright SAE International Provided by IHS under license with SAENot for ResaleNo reproduction or networking permitted without license from IHS-,-,
19、-1. SCOPE:This information report presents a preliminary discussion of liquid propellant gas generation (LPGG) systems. A LPGG system, as used herein, is defined as a system which stores a liquid propellant and, on command, discharges and converts the liquid propellant to a gas. The LPGG system can
20、interface with a gas-to-mechanical energy conversion device to make up an auxiliary power system. Figure 1 shows a block diagram of LPGG system components which include a propellant tank, propellant expulsion system, propellant control and a decomposition (or combustion) chamber.FIGURE 1 - LPGG Syst
21、em Block DiagramThe purpose of this report is to provide general information on the variety of components and system arrangements which can be considered in LPGG design, summarize advantages and disadvantages of various approaches and provide basic sizing methods suitable for initial tradeoff purpos
22、es.2. REFERENCES:2.1 Compatibility of Hydrazine Blend Fuels in metal containers at elevated temperatures - CPIA Publication 160, December 19572.2 Thermal Stability of Mixed Hydrazine Fuels, CPIA Publication 160, December 19572.3 MHF-5 Storage Data - USAF Propellant Handbooks Hydrazine Fuels Vol. I A
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SAEAIR1343B2013LIQUIDPROPELLANTGASGENERATIONSYSTEMS 液体 推进 气体 发生 系统 PDF

链接地址:http://www.mydoc123.com/p-1020009.html