REG NASA-LLIS-0713-2000 Lessons Learned Vehicle Integration Tolerance Buildup Practices.pdf
《REG NASA-LLIS-0713-2000 Lessons Learned Vehicle Integration Tolerance Buildup Practices.pdf》由会员分享,可在线阅读,更多相关《REG NASA-LLIS-0713-2000 Lessons Learned Vehicle Integration Tolerance Buildup Practices.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、Best Practices Entry: Best Practice Info:a71 Committee Approval Date: 2000-03-16a71 Center Point of Contact: MSFCa71 Submitted by: Wil HarkinsSubject: Vehicle Integration/Tolerance Buildup Practices Practice: Use master gauges, tooling, jigs, and fixtures to transfer precise dimensions to ensure acc
2、urate mating of interfacing aerospace hardware. Calculate overall worst-case tolerances using the root sum square method of element tolerances when integrating multiple elements of aerospace hardware.Programs that Certify Usage: This practice has been used on Saturn I and Saturn V, Space Shuttle Ext
3、ernal Tank (ET), and Space Shuttle Solid Rocket Booster (SRB) programs.Center to Contact for Information: MSFCImplementation Method: This Lessons Learned is based on Reliability Practice No. PD-ED-1219; from NASA Technical Memorandum 4322A, NASA Reliability Preferred Practices for Design and Test.Be
4、nefit:Using prudent and carefully planned methods for specifying tolerances and for designing, manufacturing and mating major elements of aerospace hardware, will result in a cost-effective program with minimal rejects and waivers, and will avoid costly schedule delays due to potential mismatching o
5、r misfitting of major components and assemblies.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Implementation Method:Introduction:Elements of large aerospace hardware, such as those encountered in the Space Shuttle program, are often (1) manufacture
6、d in diverse locations; (2) manufactured and assembled by different centers, prime contractors, and subcontractors; and (3) manufactured and assembled in varying climates and environments. Several additional factors must be considered in establishing design tolerances and in providing jigs and fixtu
7、res to assure that the major elements can be mated successfully prior to launch. Specifically, the size and weight of these major components and assemblies (such as the ET and SRB) are so great that special consideration must be given to hardware deflection and deformation due to vehicle mass; wind
8、loads; and environmental factors, such as temperature, humidity, and atmospheric contamination. A variety of methods of calculating and allowing for tolerance buildup and for ensuring matching components at the assembly site have been developed to meet the specific needs of these large hardware elem
9、ents of the Space Shuttle program. No one method suits all needs. In some instances (in the ET project, for example), the overall tolerance between major critical dimensions is the sum of all of the “worst-case“ tolerances of the subassemblies. In the SRB project, for example, the root sum square of
10、 the tolerances of segments is used to arrive at the tolerance on major critical dimensions. In addition, adjustable supports are used at critical attach points to permit minor variations in matching and assembling these two major Space Shuttle hardware elements.This practice provides selected metho
11、ds that have proven successful in ensuring that major elements of aerospace hardware will be successfully and accurately assembled both in the factory and in the field; and it provides methods and definitions of dimension and tolerance buildup practices that have proven successful in designing, buil
12、ding, and flying large aerospace vehicles.Master Tooling/Jigs And Fixtures:Master tooling should be used when machining a number of interchangeable parts to ensure that each part will fit and function properly. Another method of assuring interchangeability of parts during manufacturing is through th
13、e use of jigs or fixtures. This method is used primarily when an operation such as welding, drilling, or reaming is performed by hand on interchangeable parts.Example:Thiokol, Inc. is under contract to NASA MSFC to fabricate the motor segments of the SRB. These segments must fit together precisely w
14、hen they are assembled at KSC; therefore, each segment must be indexed when it is manufactured by drilling the indexing holes in the tang and clevis joints of the Solid Rocket Motor (SRM) segment using a master tool. All of the master tools are made from transfer gauges, and the transfer gauges are
15、made from a master gauge, resulting in the same indexing regardless of where the segments are manufactured (see Figure 1).Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-refer to D descriptionD refer to D descriptionDMaster Gauge:Provided by IHSNot f
16、or ResaleNo reproduction or networking permitted without license from IHS-,-,-The master gauge is a stable, heavy cast iron fixture into which the master interface hole pattern has been precision bored. The bored holes are lined with pressed-in, hardened bushings (see Figure 2).The exact location of
17、 each hole is determined by independent inspection and is entered on the master gauge drawing as a basic no-tolerance dimension. This drawing, and the master gauge it depicts, describe and establish the mastered hole pattern. The master gauge is used as a template when bushings are potted into the t
18、ransfer gauge.Transfer Gauge:Transfer gauges are stable, rigid fixtures into which hardened bushings are potted with an epoxy compound. During potting, the bushings for the transfer gauge are held in the correct position by potting pins located in the master gauge. (As shown in Figure 2), transfer g
19、auge is fitted over the master gauge before potting, and the transfer gauge bushings are located precisely before potting using the potting pins. After the potting material has cured, check pins are inserted first through the master tool and then through the new bushing location.refer to D descripti
20、onMaster Tool/Drill Jig: DMaster tools are fixtures into which hardened bushings are potted with an epoxy compound. The transfer gauge is used as a template when bushing are potted in the master tool (see Figure 3). The bushings are held in position by the transfer gauge and potting pins. After the
21、potting material has cured, check pins are inserted through the transfer gauge into the master tool to verify the location of the potted bushings.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Master tools are used as drill jigs to assure that the a
22、ssembly holes and pins and the indexing holes and pins in the tangs and clevis joints of the SRM segments are precisely the same (see Figure 4). Master tools are made from the same material as the SRB segment casings. Therefore, the coefficient of expansion is the same for both. It is critical that
23、the master tools and the SRB segments be subjected to the same environment until they stabilize with the area temperature before attempting to mate them or initiate drilling.refer to D descriptionInspection pins are used to verify hole locations in the SRM segment relative to the master tool.Mobile
24、Launch Platform (MLP) Preparation for SRB Stack: D1. The support post #2 under the MLP is adjusted to a certain height in reference to a benchmark in the Vehicle Assembly Building (VAB). There is a corresponding support post #2 and benchmark at the launch pad.2. Once support post #2 has been adjuste
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- REGNASALLIS07132000LESSONSLEARNEDVEHICLEINTEGRATIONTOLERANCEBUILDUPPRACTICESPDF

链接地址:http://www.mydoc123.com/p-1018359.html