2019年高考数学高频考点名师揭秘与仿真测试专题15函数函数模型和函数的综合应用理.doc
《2019年高考数学高频考点名师揭秘与仿真测试专题15函数函数模型和函数的综合应用理.doc》由会员分享,可在线阅读,更多相关《2019年高考数学高频考点名师揭秘与仿真测试专题15函数函数模型和函数的综合应用理.doc(16页珍藏版)》请在麦多课文档分享上搜索。
1、115 函数 函数模型和函数的综合应用【考点讲解】1、具本目标:函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.考点解析:1.掌握 一次函数、二次函数、指数函数、对数函数、幂函数以及其他函数模型;会从实际问题中抽象出函数模型,进而利用函数知识求解.高考对函数应用的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现2.高考对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查
2、一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数二、知识概述:1.常见的几种函数模型(1)一次函数模型: .(2)反比例函数模型: .(3)二次函数模型: .(4)指数函数模型: .(5)对数函数模型: .2.解决函数模型应用的解答题,还有以下几点容易造成失分,在备考中要高度关注:读不懂实际背景,不能将实际问题转化为函数模型对涉及的相关公式,记忆错误在求解的过程中计算错误2另外需要熟练掌握求解方程、不等式、函数最值的方法,才能快速正确地求解3.方法提示:1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指
3、数函数模型来表示2)应用指数函数模型时,关键是对模型的判断,先设定模型将有关数据代入验证,确定参数,从而确定函数模型3) y a(1 x)n通常利用指数运算与对数函数的性质求解4)对于直线上升、指数增长、对数增长的特点要注意区分:直线上升:匀速增长,其增长量固定不变;指数增长:先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;对数增长:先快后慢,其增长速度缓慢公司的利润选择直线上升或指数模型增长,而员工奖金选择对数模型增长5)利用函数模型解决实际问题,通常有以下三种类型:(1)利用给定的函数模型解决实际问题;(2)建立确定性函数模型解决问题;(3)建立拟合函数模型解决实际问题6)使用函数模型
4、解决实际问题(1)题目特点:叙述中体现两个变量之间的关系(涉及的量也许有多个,但均能够用两个核心变量进行表示) 。以其中一个为自变量,则另一个变量 可视为自变量的函数,进而搭建出函数模型,再根据导数,均值不等式等工具求出最值(2)需用到的数学工具与知识点: 分段函数:当自变量的不同取值导致解析式不同时,可通过建立分段函数来体现两个变量之间的关系,在题目中若有多种情况,且不同的情况对应不同的计算方式,则通常要用分段函数进行表示。 导数:在求最值的过程中,若函数解析式不是常见的函数(二次函数,对勾函数等) ,则可利用导数分析其单调性,进而求得最值 均值不等式:在部分解析式中(可构造和为定值或积为定
5、值)可通过均值不等式迅速的找到最值。 分式函数的值域问题:可通过分离常数对分式进行变形,并利用换元将其转化为熟悉的函数求解(3)常见的数量关系: 面积问题:可通过寻底找高进行求解,例如:平行四边形面积 底 高 梯形面积 12(上底 下底) 高 三角形面积 12底 高 商业问题:总价 单价 数量 利润 营业额 成本 货物单价 数量 成本 利息问题:3利息 本金 利率 本息总和 本金 利息 本金 利率 本金(4)在解决实际问题时要注意变量的取值范围应与实际情况相符,例如:涉及到个数时,变量应取正整数。涉及到钱,速度等问题,变量的取值应该为正数。5.使用线性规划模型解决实际问题(1)题目特点:叙述中
6、也有两个核心变量,但条件多为涉及两核心变量的不等关系,且所求是关于两个核心变量的表达式,这类问题通常使用线性规划模型来解决问题(2)与函数模型的不同之处 函数模型:体现两核心变量之间的等量关系,根据一个变量的范围求另一个变量的范围(或最值) 线性规划模型:体现关于两变量的不等关系,从而可列出不等式组,要解决的是含两个变量的表达式的最值。(3)解题步骤:根据题目叙述确定未知变量(通常选择两个核心变量,其余变量用这两个进行表示) ,并列出约束条件和目标函数,然后利用数形结合的方式进行解决(4)注意事项:在实际问题中,变量的取值有可能为整数,若最优解不是整数,则可在最优解附近寻找几对整点,代入到目标
7、函数中并比较大小6.使用三角函数模型解决实际问题(1)题目特点:题目以几何图形(主要是三角形)作为基础,条件多与边角相关(2)需要用到的数学工具与知识点: 正弦定理:设 ABC;三边 ,abc所对的角分别为 ,ABC,则有 余弦定理(以 和对角 为例) , 三角函数表达式的化简与变形 函数 的值域(3)解题技巧与注意事项: 在求边角问题时,应把所求的边或角放在合适的三角形中 在直角三角形里,已知一条边,则其它边可用该边与内角的三角函数值进行表示 在图形中要注意变量的取值范围【真题分析】1.【2015 高考新课标 2 文理】如图,长方形 ABCD的边 2, 1BC, O是 A的中点,点 P沿着边
8、 BC, D与 A运动,记 OPx将动 到 、 两点距离之和表示为 x的函数 ()f,则4()yfx的图象大致为( )D P CB OAx当点 P在 AD边上运动时,即 34x时, ,从点 P的运动过程可以看出,轨迹关于直线 2x对称,且 ,且轨迹非线型,故选 B 【答案】B2.【2014 高考北京文第 8 题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率 p与加工时间 t(单位:分钟)满足的函数关系 ( a、 b、c是常数) ,下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟 B. 3.75分钟
9、C. 4.0分钟 D. 4.25分钟5所以 ,解得 ,所以 ,因为 0t,所以当 时, p取最大值,故此时的 t=3.75分钟为最佳加工时间,故选 B.【答案】B【变式】 【2015 高考四川,文 8】某食品的保鲜时间 y(单位:小时)与储藏温度 x(单位:)满足函数关系 kxbye( 2.718为自然对数的底数, ,kb为常数).若该食品在 0的保鲜时间是 192小时,在 的保鲜时间是 4小时,则该食品在 3的保鲜时间是( )A.16 小时 B.20 小时 C.24 小时 D.21 小时【解析】本题考查指数函数的概念及其性质,考查函数模型在现实生活中的应用,考查整体思想,考查学生应用函数思想
10、解决实际问题的能力.由题意, 21948bke得 19bke,于是当 x33 时, y e33k b( e11k)3eb 31()219224(小时)【答案】C3.【2014 福建,文 9】要 制作一个容积为 34m,高为 1m 的无盖长方体容器,已知该溶器的底面造价是每平方米 20 元,侧面造价是是每平方米 10 元,则该容器的最低总造价是 ( )A.80 元 B.120 元 C.160 元 D.240 元6【答案】C4.【优选题】某工厂产品的年 产量在 150吨至 2吨之间,年生产的总成本 y(万元)与年产量 x(吨)之间的关系可近似表示为 ,则每吨的成本最低时的年产量为( )A.240吨
11、 B.20吨 C.180吨 D.160吨【解析】本题考点是函数模型在实际问题中的应用,由题意可知,成本,当且仅当 401x即 20x时取“ ” 【答案】B5.【优选题】一个人以 6 米/秒的速度去追赶停在交通灯前的的汽车,当他离汽车 25 米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同) ,汽车在时间 t 内的路程为 21st米,那么,此人( )A.可在 7 秒内追上汽车 B.可在 9 秒内追上汽车C.不能追上汽车,但其间最近距离为 14 米 D.不能追上汽车,但其间最近距离为 7 米【解析】设人于 x秒追上汽车,有 ,方程无解,因此不能追上汽车,由二次函数的性质可知, 6,最
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 高频 考点 名师 揭秘 仿真 测试 专题 15 函数 模型 综合 应用 DOC
