2019届高考数学二轮复习第二篇专题通关攻略专题5统计与概率2.5.2概率、随机变量及其分布列课件.ppt
《2019届高考数学二轮复习第二篇专题通关攻略专题5统计与概率2.5.2概率、随机变量及其分布列课件.ppt》由会员分享,可在线阅读,更多相关《2019届高考数学二轮复习第二篇专题通关攻略专题5统计与概率2.5.2概率、随机变量及其分布列课件.ppt(110页珍藏版)》请在麦多课文档分享上搜索。
1、第2课时 概率、随机变量及其分布列,热点考向一古典概型、几何概型 考向剖析:本考向考查形式为选择题、填空题,主要考 查古典概型、几何概型的概率计算.考查运算求解能力 及应用意识,为基础题或中档题,分值为5分.2019年的高考仍将以选择题、填空题的形式考查, 除常规的概率计算问题,还应注意与数学文化的渗透.,【典例1】(1)(2018全国卷)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( ),(2)(2018赤峰二模)如图在矩形OABC中的
2、曲线分别是 y=sin x,y=cos x,A ,C(0,1),在矩形OABC内随 机取一点,则此点取自阴影部分的概率为 ( ),(3)(2018郑州一模)如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为_.,【解析】(1)选C.不超过30的素数有2,3,5,7,11,13, 17,19,23,29共10个,其中和为30的有7+23,11+19, 13+17.所以随机选取两个数,和为30的概率为,(2)选B.由题可知图中阴影部分的面积S=2 (cos x -sin x)dx=2(sin x+cos x) =2(
3、 -1),易知矩形 OABC的面积为 ,所以在矩形OABC内随机取一点, 此点取自阴影部分的概率为,(3)从8个顶点任取4个顶点共有 =70种选择方法;如图所示,三棱锥C-A1AB是“三节棍体”:,可分以下三步确定“三节棍体”的个数,从六个面中 取一个面有 =6种取法,从一个面中的四个点中取 出三个点有 =4种取法,另外一个点有2种取法,考 虑到重复性(如三棱锥C-A1AB与三棱锥A1-ABC重复), 可知满足是“三节棍体”的有 =24种,故所求 概率为P= 答案:,【易错警示】解答本题容易出现重复计数,导致所得 概率为 的错误.,【探究追问】把例1(2)的矩形改为矩形ABCD,其四个顶点的坐
4、标分别为A(0,-1),B(,-1),C(,1),D(0,1),如图所示,在矩形ABCD内随机取一点,试计算此点取自阴影部分的概率.,【解析】根据题意,可得曲线y=sin x与y=cos x围成 的区域,其面积为 (sin x-cos x)dx=(-cos x- sin x) 又矩形ABCD的面积为 2,由几何概型概率公式得该点取自阴影区域的概 率是,【名师点睛】 1.利用古典概型求概率的关键及注意点 (1)关键:正确求出基本事件总数和所求事件包含的基本事件总数,这常常用到排列、组合的有关知识. (2)注意点:对于较复杂的题目计数时要正确分类,分类时应不重不漏.,2.几何概型的适用条件及求解关
5、键 (1)适用条件:当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解. (2)求解关键:构成试验的全部结果的区域和事件发生的区域的确定是关键,有时需要设出变量,在坐标系中表示所需要的区域.,【考向精炼】 1.设不等式组 所表示的区域为M,函数y=的图象与x轴所围成的区域为N,向M内随机投 一个点,则该点落在N内的概率为( ),【解析】选B.作出图形如图所示:,则区域M为ABC,区域N为单位圆的下半圆,点O到直线 x+y=- 和直线x-y= 的距离均为 =1,故半圆与 AB,BC相切.所以向M内随机投一个点,则该点落在N内 的概率为P=,2.党的十九大报告指出,建
6、设教育强国是中华民族伟大复兴的基础工程,必须把教育事业放在优先位置,深化教育资源的均衡发展.现有4名男生和2名女生主动申请毕业后到两所偏远山区小学任教,将这6名毕业生全部进行安排,每所学校至少安排2名毕业生,则每所学校,男女毕业生至少安排一名的概率为 世纪金榜导学号( ),【解析】选C.由题意,将这六名毕业生全部进行安排, 每所学校至少2名毕业生,基本事件的总数为N= =50种,每所学校男女毕业生至少安排 一名共有:,一是其中一个学校安排一女一男,另一个学校有一女 三男,有 =16种, 二是其中一个学校安排一女两男,另一个学校有一女 两男,有 =12种, 共有16+12=28种,所以概率为P=
7、,【加练备选】 1.(2016全国卷)从区间0,1随机抽取2n个数 x1,x2,xn,y1,y2,yn,构成n个数对(x1,y1), (x2,y2),(xn,yn),其中两数的平方和小于1的数对 共有m个,则用随机模拟的方法得到的圆周率 的近 似值为 ( ),【解析】选C.由题意得:(xi,yi)(i=1,2,n)在如图所示的正方形中,而平方和小于1的点均在如图所示的阴影中, 由几何概型概率计算公式知 所以=,2.在区间0,上随机取一个数x,使- cos x 的概率为 ( ),【解析】选B.因为0x,- cos x ,所以x ,区间长度为 ,则对应的概率,3.某工厂生产了一批颜色和外观都一样的
8、跳舞机器人,从这批跳舞机器人中随机抽取了8个,其中有2个是次品,现从8个跳舞机器人中随机抽取2个分配给测验员,则测验员拿到次品的概率是 ( ),【解析】选D.根据题意可得P=,热点考向二 条件概率及相互独立事件的概率 考向剖析:本考向考查形式为选择填空题,主要考查条件概率、相互独立事件的概率计算.考查运算求解能力及应用意识,为基础题或中档题,分值为5分.2019年的高考仍将以选择填空题的形式考查,仍将以常规的概率计算问题为主.,【典例2】(1)(2018濮阳二模)如图,已知电路中4个 开关闭合的概率都是 ,且是相互独立的,则灯亮的 概率为 ( ),(2)在中心为O的正六边形ABCDEF的电子游
9、戏盘中(如图),按下开关键后,电子弹从O点射出后最后落入正六边形的六个角孔内,且每次只能射出一个,现将A,B,C,D,E,F对应的角孔的分数依次记为1,2,3,4,5,6,若连续按下两次开关,记事件M为“两次落入角孔的分数之和为偶数”,事件N为“两次落入角孔的分数都为偶数”,则P(N|M)= ( ),(3)(2018孝义一模)某游戏中一个珠子从通道(图中 实线表示通道)由上至下滑下(假设珠子滑向每个通道 是等可能的),从最下面的六个出口(如图中1,2,3,4, 5,6所示)出来,规定猜中出口者为胜,如果你在该游戏 中,猜得珠子从3号出口出来,那么你取胜的概率为 _.,【解析】(1)选D.记甲、
10、乙、丙、丁这4个开关闭合分 别为事件A,B,C,D,又记甲与乙至少有一个不闭合为事 件 ,则P( )=P(A )+P( B)+P( )= ,则灯 亮的概率为P=1-P( )=1-P( )P( )P( ) =1-,(2)选D.事件MN包括:(2,2),(2,4),(2,6),(4,2),(4,4), (4,6),(6,2),(6,4),(6,6),共9种,而事件M包括 (1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1), (3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3), (5,5),(6,2),(6,4),(6,6)共18种,由
11、题可得, P(N|M)=,(3)因为从A到3总共有 =10种走法,每一种走法的概 率都是 ,所以珠子从出口3出来的概率是 答案:,【名师点睛】 1.条件概率的求法 (1)利用定义,分别求P(A)和P(AB),得P(B|A)= 这是通用的求条件概率的方法.,(2)借助古典概型概率公式,先求事件A包含的基本事件 数n(A),再在事件A发生的条件下求事件B包含的基本事 件数,即n(AB),得P(B|A)=,2.求复杂事件概率的方法及注意点 (1)直接法:正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥的事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解.,(
12、2)间接法:当复杂事件正面情况较多,反面情况较少时,可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解. (3)注意点:注意辨别独立重复试验的基本特征:在每次试验中,试验结果只有发生与不发生两种情况;在每次试验中,事件发生的概率相同.,【考向精炼】 1.(2018西宁一模)先后掷一枚质地均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x,y中有偶数,且xy”,则概率P(B|A)= ( ),【解析】选A.由题意可得P(AB)= P(A)= 所以P(B|A)=,2.高三某位
13、同学参加物理、化学、政治科目的等级考, 已知这位同学在物理、化学、政治科目考试中达A+的 概率分别为 ,这三门科目考试成绩的结果互不 影响,则这位考生至少得2个A+的概率是_.,【解析】这位考生至少得2个A+可分以下两种情况: (1)恰有两门得A+;(2)三门都得A+.其概率为 答案:,3.抛一枚均匀硬币,正反面出现的概率都是 ,反复 这样投掷,数列an定义如下:an= 若Sn=a1+a2+an(nN*),则“S20,S8=2”的概率 是_. 世纪金榜导学号,【解析】事件“S20,S8=2”是指:(1)前2次都是正面, 后6次中3正3反;(2)前2次都是反面,后6次中5正1反, 故其概率为P=
14、 答案:,【加练备选】 1.某企业有甲、乙两个研发小组,他们研发新产品成功 的概率分别为 .现安排甲组研发新产品A,乙组研 发新产品B,设甲、乙两组的研发相互独立,则至少有一 种新产品研发成功的概率为_.,【解析】设至少有一种新产品研发成功的事件为事件 A且事件B为事件A的对立事件,则事件B为一种新产品 都没有成功, 因为甲乙研发新产品成功的概率分别为 . 则P(B)=,再根据对立事件的概率之间的公式可得P(A)=1-P(B) = ,故至少有一种新产品研发成功的概率是 . 答案:,2.某校高三年级学生一次数学诊断考试成绩(单位:分)X服从正态分布N(110,102),从中抽取一个同学的数学成绩
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 二轮 复习 第二 专题 通关 攻略 统计 概率 252 随机变量 及其 分布 课件 PPT

链接地址:http://www.mydoc123.com/p-937005.html