NASA NACA-TN-4077-1957 Static longitudinal and lateral stability characteristics at low speed of 45 degrees sweptback-midwing models having wings with an aspect ratio of 2 4 or 6《低.pdf
《NASA NACA-TN-4077-1957 Static longitudinal and lateral stability characteristics at low speed of 45 degrees sweptback-midwing models having wings with an aspect ratio of 2 4 or 6《低.pdf》由会员分享,可在线阅读,更多相关《NASA NACA-TN-4077-1957 Static longitudinal and lateral stability characteristics at low speed of 45 degrees sweptback-midwing models having wings with an aspect ratio of 2 4 or 6《低.pdf(31页珍藏版)》请在麦多课文档分享上搜索。
1、,*NATIONAL ADVISORY COMMITTEEFOR AERONAUTICSTECHNICAL NOTE 4077,STATIC LONGITUDINAL LUU3IdiTERALi STABITJTYCHARACTERISTICS AT LOW SPEED OF 45 SWEPTBACK-MIIXVINGMODELS HASZINGWINGS WTIH AN ASPECT RATIO OF 2, 4, OR 6By David F. Thomas, Jr., and Walter D. WolhartLangley Aeronautical LaboratoryLangley F
2、ield, Va.WashingtonSeptember 1957.-:. ,Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECHLIBRARYKAFB, NMNATIONAL ADVISORY COMKHTEEIilllllllllululll:lllllllllllFoR AERONAUTICS nDkh748TECHNICAL NOTE 4077STATIC LONGITUDINAL AND LATERALCHARACTERISTICSA
3、T LOW SPEED OF 45 SWZPTI?ACK-MIDWINGMODELS HAVING WINGS WITH AN ASPECT RATIO OF 2, !, OR 6Ey David F. Thomas, Jr., and Walter D. Wolhartm!4MARYA systematic investigation was conducted in the Langley stabilitytunnel to determine the effects of the various components and cotiina-tions of components on
4、 the static longitudinal and lateral stabilicharacteristicsat low speed of a seri-esof 45 sweptback-midwing-airplaneconfigurations having wings with an aspect ratio of 2, 4, or 6.The results of this investigation have indicated that the wing-ontail effectiveness in producing negative pitching moment
5、 increased withaspect ratio and angle of attack-and became approximately eqwl to thewing-off value at very high angles of attack. Also, all complete modelstested became directionally unstable in the high angle-of-attack rangemimarilv as a result of increased losses in the stable contribution ofhe ta
6、il-both with angle of attack and increasing wing aspect ratio.INTRODUCTIONIn general, at low angles of attack satisfactory estimates of thestability characteristics of midwing or near-midwing airplanes havingbodies of revolution may be made by use of procedures such as thosepresented in reference 1.
7、 At moderate to high sngles of attack, how-ever, reliable estimates sre difficult, if not impossible, to makebecause of the unpredictable interference effects between the miouscomponents of the airplane.Experimental data are available froina number of sources concerningthe static stability character
8、istics of the unswept-wing case and theswept-wing case (for example, refs. 2 to 8). These data show the influ-ence of such geometric variables as tail sxea, tail length, fuselagecross section, wing location, and others. The effects of wing aspectratio on the stability characteristics for wing-alone
9、and wing-fuselageconfigurations me given in references 9 to 13. Little systematicinformation, however, is available concerning the effect of wing aspectProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACA TN 4077ratio on the contributions of wings,
10、 fuselages, W tails to the stability Acharacteristics of complete models. In order to provide this informationan investigation (ref. 2) was conducted in the Langley stabili tunnelon a series of unswept-midtingmodels having interchangeablewings of.aspect ratio 2, 4, or 6.The purpose of the present pa
11、per is tQ extend the results of theunswept-wing investigation of reference 2 to include the static longi-tudinal and lateral stability characteristicsfor a series of45 sweptback-midwingconfigurationswith wings of aspect ratio 2, 4,or 6. Data are presented for an angle-of-attackrange from -4 to 32.Th
12、e effects of wing aspect ratio on the contributions of the variouscomponents to the static longitudinal and-lateral stability characteris-tics are presented with particular emphasis on the influence of the com-ponents, singly and in combination, on the tail contributions.SYMBOLSAQ data are referred
13、to the stability system of axes with the ori-gin at the projection on the plsme of”symmetry of the qparter-chordpointof the wing mean aerodynamic chord. Positive directions of forces,moments, and angular displacements are shown in figure 1. The coeffi-cients and symibolsare defined as follows:A aspe
14、ct ratio, sb span, ftc local.chord, ftJb/2E mean aerodynamic chord, C%y, fto1 tail length, distance measured parallel to fuselage referenceline from mounting point to ?5/4of the tail (same for verti-cal and horizontal tail), fts surface area, sq ftx location of quarter-chordpoint of local chord, mea
15、sured fromleading edge of root chord parallel to chord of symmetry, ftz location of quarter-chordpoint of mean aerodynamic chord,measured from leading edge of root chord parallel to chordrb/2of Sylmlletry,2so Cx ay, ftProvided by IHSNot for ResaleNo reproduction or networking permitted without licen
16、se from IHS-,-,-NACA TN 4077TY spanwise distance measured from andof symmetry, ftperpendicular to plane3F spanwise distance to mean aerodynamic chord, measured fromCDCLCyC!mCn2Jb/2and perpendicular to plane of SYrIUEtW, Wmfftospanwise distance along vertical tail measured from and per-pendicular to
17、fuselage reference line, ftspanwise distance along vertical tail to mean aerodynamicchord of vertical tail, measured from and perpendicularbvto fuselage reference line, + J CZ dz, ftv o1 lb/q.ftfree-stream dynamic pressure, P jfree-stream velocity, f%/secspanwisedensity,angle ofangle ofcomponent of
18、free-stream velocity, ft/secslugs/cu ftattack, degsideslip, defined as sin-l Y degVJapproximate drag coefficient, Dr%qlift coefficient, theprinciple dimensions of the complete models are shown in figure 2.Sketches of the plan forms of the three 45 sweptback wings of aspectratios 2, 4, and 6 used in
19、this investigation sre shown in figure 3.Ordinates of the fuselage and the NACA 65A8 airfoil section used forthe wings smd tail surfaces are presented in table II. The fuselagewas circular in cross ection in planes perpendicular to the fuselagereference line.In this investigation the horizontal and
20、vertical.tails were testedas a unit at all times. In the absence of the fuselage, the tail groupwas mounted on a boom in the same position relative to the moimtingpoint (5/4 of the wing) that the tail occupied in the presence of thefuselage. A complete-model configurationand a wing-tail configuratio
21、nmounted on a single-strut support sre shown inTESTS AND CORRECTIONSTests for this investigationwere made atfigure 4.a dynamic pressure of24.9 pounds per square foot which corresponds to a Mach nuniberof 0.13.The Reynolds nunibersbased on the wing mean aerodynamic chord were1.00 x 106 for the aspect
22、-ratio-2wing, 0.71 x 106 for”the aspect-ratio-4wing, and 0.58 x 106 for the aspqct-ra;io-6ting.The longitudinal characteristics , CL, and %1 were,determinedfor an angle-of-attackrange of -4 to 32. The sideslip derivatives. c% c% d C% were determined for this range of angle of attackby using values f
23、or angle of sideslip of 5 and -5.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-6 NACAm 4077.The angle of attack, the drag coefficient,and the pitching-momentcoefficienthave been corrected for jet-boundaryeffects by using approx-imate correctionsbas
24、ed on unswept-wingtheory and in the manner suggested .in references 14 and 15. Tare correctionshave been applied only to thewing-on basic longitudinal data Cm, , and . The data have notbeen corrected for blockage.PRESENTATION OF RESULTSThe results of this investigationare presented as coefficients o
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASANACATN40771957STATICLONGITUDINALANDLATERALSTABILITYCHARACTERISTICSATLOWSPEEDOF45DEGREESSWEPTBACKMIDWINGMODELSHAVINGWINGSWITHANASPECTRATIOOF24OR6

链接地址:http://www.mydoc123.com/p-836365.html