ASTM E422-2005(2011) 2500 Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter 《使用水冷热量计测量热通量的标准试验方法》.pdf
《ASTM E422-2005(2011) 2500 Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter 《使用水冷热量计测量热通量的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM E422-2005(2011) 2500 Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter 《使用水冷热量计测量热通量的标准试验方法》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E422 05 (Reapproved 2011)Standard Test Method forMeasuring Heat Flux Using a Water-Cooled Calorimeter1This standard is issued under the fixed designation E422; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year o
2、f last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the measurement of a steadyheat flux to a given water-cooled surface by means of a systemene
3、rgy balance.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to es
4、tablish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E235 Specification for Thermocouples, Sheathed, Type Kand Type N, for Nuclear or for Other High-ReliabilityApplications3. Summary of Tes
5、t Method3.1 A measure of the heat flux to a given water-cooledsurface is based upon the following measurements: (1) thewater mass flow rate and (2) the temperature rise of coolantwater. The heat flux is determined numerically by multiplyingthe water coolant flow rate by the specific heat and rise in
6、temperature of the water and dividing this value by the surfacearea across which heat has been transferred.3.2 The apparatus for measuring heat flux by the energy-balance technique is illustrated schematically in Fig. 1.Itisatypical constant-flow water calorimeter used to measure stag-nation region
7、heat flux to a flat-faced specimen. Other calo-rimeter shapes can also be easily used. The heat flux ismeasured using the central circular sensing area, shown in Fig.1. The water-cooled annular guard ring serves the purpose ofpreventing heat transfer to the sides of the calorimeter andestablishes fl
8、at-plate flow. An energy balance on the system(the centrally located calorimeter in Fig. 1) requires that theenergy crossing the sensing surface (A,inFig. 1)ofthecalorimeter be equated to the energy absorbed by the calorim-eter cooling water. Interpretation of the data obtained is notwithin the scop
9、e of this discussion; consequently, such effectsas recombination efficiency of the surface and thermochemicalstate of the boundary layer are outside the scope of this testmethod. It should be noted that recombination effects at lowpressures can cause serious discrepancies in heat flux measure-ments
10、(such as discussed in Ref (1)3depending upon thesurface material on the calorimeter.3.3 For the particular control volume cited, the energybalance can be written as follows:ECAL5 mCpDT02DT1!#/A (1)where:ECAL= energy flux transferred to calorimeter face, Wm2m = mass flow rate of coolant water, kgs1Cp
11、= water specific heat, Jkg1K1,DT0= T02 T01calorimeter water bulk temperature riseduring operation, K,DT1= T2 T1= calorimeter water apparent bulk tem-perature rise before operation, K,T02= water exhaust bulk temperature during operation,K,T01= water inlet bulk temperature during operation, K,T2= wate
12、r exhaust bulk temperature before operation,K,T1= water inlet bulk temperature before operation, K,andA = sensing surface area of calorimeter, m2.3.4 An examination of Eq 1 shows that to obtain a value ofthe energy transferred to the calorimeter, measurements mustbe made of the water coolant flow ra
13、te, the temperature rise ofthe coolant, and the surface area across which heat is trans-ferred. With regard to the latter quantity it is assumed that thesurface area to which heat is transferred is well defined. As isindicated in Fig. 1, the design of the calorimeter is such that theheat transfer ar
14、ea is confined by design to the front or directlyheated surface. To minimize side heating or side heat losses, a1This test method is under the jurisdiction of ASTM Committee E21 on SpaceSimulation and Applications of Space Technology and is the direct responsibility ofSubcommittee E21.08 on Thermal
15、Protection.Current edition approved Oct. 1, 2011. Published April 2012. Originallyapproved in 1971. Last previous edition approved in 2005 as E422 05. DOI:10.1520/E0422-05R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For
16、 Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The boldface numbers in parentheses refer to the list of references at the end ofthis test method.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, P
17、A 19428-2959, United States.water-cooled guard ring or shroud is utilized and is separatedphysically from the calorimeter by means of an air gap and lowconductivity bushing such as nylon. The air gap is recom-mended to be no more than 0.5 mm on the radius. Thus, ifsevere pressure variations exist ac
18、ross the face of the calorim-eter, side heating caused by flow into and out of the air gap willbe minimized. Also, since the water-cooled calorimeter andguard ring operate at low surface temperatures (usually lowerthan 100C) heat losses across the gap by radiant interchangeare negligible and consequ
19、ently no special calorimeter surfacegap finishes are necessary. Depending upon the size of thecalorimeter surface, large variations in heat flux may existacross the face of the calorimeter. Consequently, the measuredheat flux represents an average heat flux over the surface areaof the water-cooled c
20、alorimeter. The water-cooled calorimetercan be used to measure heat-flux levels over a range from 10kW/m2to 60 MW/m2.4. Significance and Use4.1 The purpose of this test method is to measure the heatflux to a water-cooled surface for purposes of calibration of thethermal environment into which test s
21、pecimens are placed forevaluation. If the calorimeter and holder size, shape, andsurface finish are identical to that of the test specimen, themeasured heat flux to the calorimeter is presumed to be thesame as that to the samples heated surface. The measured heatflux is one of the important paramete
22、rs for correlating thebehavior of materials.4.2 The water-cooled calorimeter is one of several calorim-eter concepts used to measure heat flux. The prime drawback isits long response time, that is, the time required to achievesteady-state operation. To calculate energy added to the coolantwater, acc
23、urate measurements of the rise in coolant tempera-ture are needed, all energy losses should be minimized, andsteady-state conditions must exist both in the thermal environ-ment and fluid flow of the calorimeter.4.3 Regardless of the source of energy input to the water-cooled calorimeter surface (rad
24、iative, convective, or combina-tions thereof) the measurement is averaged over the surfaceactive area of the calorimeter. If the water-cooled calorimeter isused to measure only radiative flux or combined convective-radiative heat-flux rates, then the surface reflectivity of thecalorimeter shall be m
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME422200520112500STANDARDTESTMETHODFORMEASURINGHEATFLUXUSINGAWATERCOOLEDCALORIMETER 使用 水冷 热量计 测量 通量

链接地址:http://www.mydoc123.com/p-532729.html