现代控制理论(第二章).ppt
《现代控制理论(第二章).ppt》由会员分享,可在线阅读,更多相关《现代控制理论(第二章).ppt(55页珍藏版)》请在麦多课文档分享上搜索。
1、2.1 线性定常齐次状态方程的解(自由解),2.2 矩阵指数函数状态转移矩阵,2.3 线性定常系统非齐次方程的解,2.4 * 线性时变系统的解,2.5 * 离散时间系统状态方程的解,2.6* 连续时间状态空间表达式的离散化,第二章 控制系统状态空间表达式的解,2.1 线性定常齐次状态方程的解(自由解),所谓系统的自由解,是指系统输入为零时,由初始状态引起的自由 运动。此时,状态方程为齐次微分方程:,(1),若初始时刻 时的状态给定为 则式(1)有唯一确定解:,(2),若初始时刻从 开始,即 则其解为:,(3),证明: 和标量微分方程求解类似,先假设式(1)的解 为 的矢量幂级数形式,(4),既
2、然式(4)是式(1)的解,则式(5)对任意时刻 都成立,故 的同次 幂项的系数应相等,有:,在式(4)中,令 ,可得:,将以上结果代入式(4),故得:,(6),等式右边括号内的展开式是 矩阵,它是一个矩阵指数函数,记为 ,即,(7),于是式(6)可表示为:,再用 代替 即在代替 的情况下,同样可以证明式2) 的正确性。,2.2 矩阵指数函数状态转移矩阵,2.2.1 状态转移矩阵,齐次微分方程(1)的自由解为:,或,该式反应了状态矢量由初始状态到任意时刻的矢量变换关系,反应了 状态矢量在空间随时间转移的规律,因此称为状态转移矩阵。,2.2 矩阵指数函数状态转移矩阵,注:状态矩阵一般不是常数,而是
3、时间的函数起始矢量可以任意取,系统求解区间可任意选定状态空间法的优点,满足初始状态 的解是:,满足初始状态 的解是:,令: 则有:,2.性质二,3.性质三,1性质一,这就是组合性质,它意味着从 转移到0,再从0转移到 的组合。,2.2.2 状态转移矩阵(矩阵指数函数)的基本性质,注:本性质可用于判断矩阵是否符合状态转移矩阵的条件,这个性质说明, 矩阵与A矩阵是可以交换的。 注:本性质还表明,由状态转移矩阵 可反推A!,5.性质五,对于 方阵A和B,当且仅当AB=BA时,有 而当ABBA是,则,这个性质说明,除非距阵A与B是可交换的,它们各目的矩阵指数函 数之积与其和的矩阵指数函数不等价。这与标
4、量指数函数的性质是不同的。,4.性质四,1若 A 为对角线矩阵,即,(5),2.若 A 能够通过非奇异变换予以对角线化,即,2.2.3 几个特殊的矩阵指数函数,3.若 A 为约旦矩阵,则,(8),4.若,(9),1.根据 的定义直接计算,2.变换 A 为约旦标准型,(1)A 特征根互异,其中 T 是使 A 变换为对角线矩阵的变换阵。由式(7),有:,2.2.4 的计算,编程,用计算机算,最终能得到收敛解。但很难得到解析解。例2-1,3.利用拉氏反变换法求,(10),证明 齐次微分方程,两边取拉氏变换,即,故,4.应用凯莱哈密顿定理求,对上式两边取拉氏反变换,从而得到齐次微分方程的解:,(1)由
5、凯莱哈密顿定理,方阵A满足其自身的特征方程,即,所以有,同理,以此类推, 都可用 线性表示。,(2)在 定义中,用上面的方法可以消去 A 的 n及 n以上的幂次项, 即,(11),(3) 的计算公式,A的特征值互异时,则,证明 根据A满足其自身特征方程的定理,可知特征值 和 A 是 可以互换的,因此, 也必须满足式(11),从而有:,(12),上式对 求解,即得式(12)。,A 的特征值均相同,为 时,则,证明 同上,有:,(13),上式对 ,求异数,有:,再对 求异数,有:,重复以上步骤,最后有:,由上面的n个方程,对 求解,记得公式(13)。,2)用标准型法求解,特征值互异 ,转化成对角标
6、准型,且A为友矩阵,特征值:,例2-1,2-2,2-4:求以下矩阵A的状态转移矩阵,解:1)直接算法(略),3)用拉氏变换法求解,例2-6,利用凯莱-哈密顿定理 -自学! 例2-3与例2-7也请注意自学!,2.3 线性定常系统非齐次方程的解,现在讨论线性定常系统在控制作用 作用下的强制运动。此时状态方程为非齐次矩阵微分方程:,当初始时刻 初始状态 时,其解为:,式中, 。,(1),(2),当初始时刻为 ,初始状态为 时,其解为:,式中, 。,(3),证明 采用类似标量微分方程求解的方法,将式(1)写成:,等式两边同左乘 ,得:,对式(4)在 上间积分,有:,整理后可得式(2):,同理,若对式(
7、4)在 上积分,即可证明式(3)。,式(2)也可从拉氏变换法求得,对式(1)进行拉氏变换,有:,即,上式左乘 ,得:,(5),注意式(5)等式右边第二项,其中:,两个拉氏变换函数的积是一个卷积的拉氏变换,即,以此代入式(5),并取拉氏反变换,即得 :,在特定控制作用下,如脉冲函数、阶跃函数和斜坡函数的激励下,则 系统的解式(2)可以简化为以下公式:,1.脉冲响应,即当 时,2.阶跃响应,即当 时,3.斜坡响应,即当 时,(6),(7),(8),例2-8 要求掌握!,例2-8:已知系统状态方程中 试求解该系统的单位阶跃响应。,解法一:积分法,例2-8:已知系统状态方程中 试求解该系统的单位阶跃响
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 控制 理论 第二 PPT
