Chapter 10Correlation and Regression.ppt
《Chapter 10Correlation and Regression.ppt》由会员分享,可在线阅读,更多相关《Chapter 10Correlation and Regression.ppt(48页珍藏版)》请在麦多课文档分享上搜索。
1、Chapter 10 Correlation and Regression,We deal with two variables, x and y. Main goal: Investigate how x and y are related, or correlated; how much they depend on each other.,Example,x is the height of mothery is the height of daughterQuestion: are the heights of daughters independent of the height o
2、f their mothers? Or is there a correlation between the heights of mothers and those of daughters? If yes, how strong is it?,Example:,This table includes a random sample of heights of mothers, fathers, and their daughters.,Heights of mothers and their daughters in this sample seem to be strongly corr
3、elated,But heights of fathers and their daughters in this sample seem to be weakly correlated (if at all).,Section 10-2 Correlation between two variables (x and y),Definition,A correlation exists between two variables when the values of one somehow affect the values of the other in some way.,Key Con
4、cept,Linear correlation coefficient, r, is a numerical measure of the strength of the linear relationship between two variables, x and y, representing quantitative data. Then we use that value to conclude that there is (or is not) a linear correlation between the two variables. Note: r always belong
5、s in the interval (-1,1), i.e., 1 r 1,Exploring the Data,We can often see a relationship between two variables by constructing a scatterplot.,Scatterplots of Paired Data,Scatterplots of Paired Data,Scatterplots of Paired Data,Requirements,1. The sample of paired (x, y) data is a random sample of qua
6、ntitative data. 2. Visual examination of the scatterplot must confirm that the points approximate a straight-line pattern. 3. The outliers must be removed if they are known to be errors. (We will not do that in this course),Notation for the Linear Correlation Coefficient,n = number of pairs of sampl
7、e data denotes the addition of the items indicated. x denotes the sum of all x-values. x2 indicates that each x-value should be squared and then those squares added. (x)2 indicates that the x-values should be added and then the total squared.,Notation for the Linear Correlation Coefficient,xy indica
8、tes that each x-value should be first multiplied by its corresponding y-value. After obtaining all such products, find their sum. r = linear correlation coefficient for sample data. = linear correlation coefficient for population data, i.e. linear correlation between two populations.,The linear corr
9、elation coefficient r measures the strength of a linear relationship between the paired values in a sample.,We should use computer software or calculator to compute r,Formula,Enter x-values into list L1 and y-values into list L2 Press STAT and select TESTS Scroll down to LinRegTTest press ENTER Make
10、 sure that XList: L1 and YList: L2 choose: b & r 0 Press on Calculate Read r2 = and r = Also read the P-value p = ,Linear correlation by TI-83/84,Interpreting r,Using Table A-6: If the absolute value of the computed value of r, denoted |r|, exceeds the value in Table A-6, conclude that there is a li
11、near correlation. Otherwise, there is not sufficient evidence to support the conclusion of a linear correlation.Note: In most cases we use the significance level a = 0.05 (the middle column of Table A-6).,Interpreting r,Using P-value computed by calculator: If the P-value is a, conclude that there i
12、s a linear correlation. Otherwise, there is not sufficient evidence to support the conclusion of a linear correlation.Note: In most cases we use the significance level a = 0.05.,Caution,Know that the methods of this section apply only to a linear correlation. If you conclude that there is no linear
13、correlation, it is possible that there is some other association that is not linear.,Round to three decimal places so that it can be compared to critical values in Table A-6. Use calculator or computer if possible.,Rounding the Linear Correlation Coefficient r,Properties of the Linear Correlation Co
14、efficient r,1. 1 r 1 2. if all values of either variable are converted to a different scale, the value of r does not change. 3. The value of r is not affected by the choice of x and y. Interchange all x- and y-values and the value of r will not change. 4. r measures strength of a linear relationship
15、. 5. r is very sensitive to outliers, they can dramatically affect its value.,Example:,The paired pizza/subway fare costs from Table 10-1 are shown here in a scatterplot. Find the value of the linear correlation coefficient r for the paired sample data.,Example - 1:,Using software or a calculator, r
16、 is automatically calculated:,Interpreting the Linear Correlation Coefficient r,Critical Values from Table A-6 and the Computed Value of r,Using a 0.05 significance level, interpret the value of r = 0.117 found using the 62 pairs of weights of discarded paper and glass listed in Data Set 22 in Appen
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CHAPTER10CORRELATIONANDREGRESSIONPPT
