Introduction to Neural Networks.ppt
《Introduction to Neural Networks.ppt》由会员分享,可在线阅读,更多相关《Introduction to Neural Networks.ppt(33页珍藏版)》请在麦多课文档分享上搜索。
1、Introduction to Neural Networks,John Paxton Montana State University Summer 2003,Chapter 7: A Sampler Of Other Neural Nets,Optimization Problems Common Extensions Adaptive Architectures Neocognitron,I. Optimization Problems,Travelling Salesperson Problem. Map coloring. Job shop scheduling. RNA secon
2、dary structure.,Advantages of Neural Nets,Can find near optimal solutions. Can handle weak (desirable, but not required) constraints.,TSP Topology,Each row has 1 unit that is on Each column has 1 unit that is on,City ACity BCity C,1st 2nd 3rd,Boltzmann Machine,Hinton, Sejnowski (1983) Can be modelle
3、d using Markov chains Uses simulated annealing Each row is fully interconnected Each column is fully interconnected,Architecture,ui,j connected to uk,j+1 with di,k ui1 connected to ukn with -dik,U11,Un1,Unn,U1n,b,-p,Algorithm,1. Initialize weights b, p p b p greatest distance between cities Initiali
4、ze temperature T Initialize activations of units to random binary values,Algorithm,2. while stopping condition is false, do steps 3 8 3. do steps 4 7 n2 times (1 epoch)4. choose i and j randomly 1 = i, j = n uij is candidate to change state,Algorithm,5. Compute c = 1 2uijb + S S ukm (-p)where k i, m
5、 j 6. Compute probability to accept changea = 1 / (1 + e(-c/T) ) 7. Accept change if random number 01 a. If change, uij = 1 uij 8. Adjust temperature T = .95T,Stopping Condition,No state change for a specified number of epochs. Temperature reaches a certain value.,Example,T(0) = 20 units are on init
6、ially b = 60 p = 70 10 cities, all distances less than 1 200 or fewer epochs to find stable configuration in 100 random trials,Other Optimization Architectures,Continuous Hopfield Net Gaussian Machine Cauchy Machine Adds noise to input in attempt to escape from local minima Faster annealing schedule
7、 can be used as a consequence,II. Extensions,Modified Hebbian Learning Find parameters for optimal surface fit of training patterns,Boltzmann Machine With Learning,Add hidden units 2-1-2 net below could be used for simple encoding/decoding (data compression),x1,x2,z1,y2,y1,Simple Recurrent Net,Learn
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- INTRODUCTIONTONEURALNETWORKSPPT
