欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to Neural Networks.ppt

    • 资源ID:376689       资源大小:148KB        全文页数:33页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to Neural Networks.ppt

    1、Introduction to Neural Networks,John Paxton Montana State University Summer 2003,Chapter 7: A Sampler Of Other Neural Nets,Optimization Problems Common Extensions Adaptive Architectures Neocognitron,I. Optimization Problems,Travelling Salesperson Problem. Map coloring. Job shop scheduling. RNA secon

    2、dary structure.,Advantages of Neural Nets,Can find near optimal solutions. Can handle weak (desirable, but not required) constraints.,TSP Topology,Each row has 1 unit that is on Each column has 1 unit that is on,City ACity BCity C,1st 2nd 3rd,Boltzmann Machine,Hinton, Sejnowski (1983) Can be modelle

    3、d using Markov chains Uses simulated annealing Each row is fully interconnected Each column is fully interconnected,Architecture,ui,j connected to uk,j+1 with di,k ui1 connected to ukn with -dik,U11,Un1,Unn,U1n,b,-p,Algorithm,1. Initialize weights b, p p b p greatest distance between cities Initiali

    4、ze temperature T Initialize activations of units to random binary values,Algorithm,2. while stopping condition is false, do steps 3 8 3. do steps 4 7 n2 times (1 epoch)4. choose i and j randomly 1 = i, j = n uij is candidate to change state,Algorithm,5. Compute c = 1 2uijb + S S ukm (-p)where k i, m

    5、 j 6. Compute probability to accept changea = 1 / (1 + e(-c/T) ) 7. Accept change if random number 01 a. If change, uij = 1 uij 8. Adjust temperature T = .95T,Stopping Condition,No state change for a specified number of epochs. Temperature reaches a certain value.,Example,T(0) = 20 units are on init

    6、ially b = 60 p = 70 10 cities, all distances less than 1 200 or fewer epochs to find stable configuration in 100 random trials,Other Optimization Architectures,Continuous Hopfield Net Gaussian Machine Cauchy Machine Adds noise to input in attempt to escape from local minima Faster annealing schedule

    7、 can be used as a consequence,II. Extensions,Modified Hebbian Learning Find parameters for optimal surface fit of training patterns,Boltzmann Machine With Learning,Add hidden units 2-1-2 net below could be used for simple encoding/decoding (data compression),x1,x2,z1,y2,y1,Simple Recurrent Net,Learn

    8、 sequential or time varying patterns Doesnt necessarily have steady state output input units context units hidden units output units,Architecture,x1,xn,cp,c1,zp,z1,ym,y1,Simple Recurrent Net,f(ci(t) = f(zi(t-1) f(ci(0) = 0.5 Can use backpropagation Can learn string of characters,Example: Finite Stat

    9、e Automaton,4 xi 4 yi 2 zi 2 ci,BEGIN,A,B,END,Backpropagation In Time,Rumelhart, Williams, Hinton (1986) Application: Simple shift register,x1,x2,z1,y2,y1,x2,x1,1 (fixed),1 (fixed),Backpropagation Training for Fully Recurrent Nets,Adapts backpropagation to arbitrary connection patterns.,III. Adaptiv

    10、e Architectures,Probabilistic Neural Net (Specht 1988)Cascade Correlation (Fahlman, Lebiere 1990),Probabilistic Neural Net,Builds its own architecture as training progresses Chooses class A over class B if hAcAfA(x) hBcBfB(x) cA is the cost of classifying an example as belonging to A when it belongs

    11、 to B hA is the a priori probability of an example belonging to class A,Probabilistic Neural Net,fA(x) is the probability density function for class A, fA(x) is learned by the net zA1: pattern unit, fA: summation unit,x1,xn,zBk,zB1,zAj,zA1,fB,fA,y,Cascade Correlation,Builds own architecture while tr

    12、aining progresses Tries to overcome slow rate of convergence by other neural nets Dynamically adds hidden units (as few as possible) Trains one layer at a time,Cascade Correlation,Stage 1,x0,x1,x2,y2,y1,Cascade Correlation,Stage 2 (fix weights into z1),x0,x1,x2,y2,y1,z1,Cascade Correlation,Stage 3 (

    13、fix weights into z2),x0,x1,x2,y2,y1,z1,z2,Algorithm,1. Train stage 1. If error is not acceptable, proceed.2. Train stage 2. If error is notacceptable, proceed.3. Etc.,IV. Neocognitron,Fukushima, Miyako, Ito (1983) Many layers, hierarchical Very spare and localized connections Self organizing Supervi

    14、sed learning, layer by layer Recognizes handwritten 0, 1, 2, 3, 9, regardless of position and style,Architecture,Architecture,S layers respond to patterns C layers combine results, use larger field of view For example S11 responds to 0 0 0 1 1 1 0 0 0,Training,Progresses layer by layer S1 connections to C1 are fixed C1 connections to S2 are adaptable A V2 layer is introduced between C1 and S2, V2 is inhibatory C1 to V2 connections are fixed V2 to S2 connections are adaptable,


    注意事项

    本文(Introduction to Neural Networks.ppt)为本站会员(李朗)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开