ASTM G134-17 Standard Test Method for Erosion of Solid Materials by Cavitating Liquid Jet.pdf
《ASTM G134-17 Standard Test Method for Erosion of Solid Materials by Cavitating Liquid Jet.pdf》由会员分享,可在线阅读,更多相关《ASTM G134-17 Standard Test Method for Erosion of Solid Materials by Cavitating Liquid Jet.pdf(17页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: G134 17Standard Test Method forErosion of Solid Materials by Cavitating Liquid Jet1This standard is issued under the fixed designation G134; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A
2、number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers a test that can be used tocompare the cavitation erosion resistance of solid materials. Asubmerged cavitating j
3、et, issuing from a nozzle, impinges on atest specimen placed in its path so that cavities collapse on it,thereby causing erosion. The test is carried out under specifiedconditions in a specified liquid, usually water. This test methodcan also be used to compare the cavitation erosion capability ofva
4、rious liquids.1.2 This test method specifies the nozzle and nozzle holdershape and size, the specimen size and its method of mounting,and the minimum test chamber size. Procedures are describedfor selecting the standoff distance and one of several standardtest conditions. Deviation from some of thes
5、e conditions ispermitted where appropriate and if properly documented.Guidance is given on setting up a suitable apparatus, test andreporting procedures, and the precautions to be taken. Standardreference materials are specified; these must be used to verifythe operation of the facility and to defin
6、e the normalizederosion resistance of other materials.1.3 Two types of tests are encompassed, one using testliquids which can be run to waste, for example, tap water, andthe other using liquids which must be recirculated, forexample, reagent water or various oils. Slightly different testcircuits are
7、 required for each type.1.4 This test method provides an alternative to Test MethodG32. In that method, cavitation is induced by vibrating asubmerged specimen at high frequency (20 kHz) with aspecified amplitude. In the present method, cavitation isgenerated in a flowing system so that both the jet
8、velocity andthe downstream pressure (which causes the bubble collapse)can be varied independently.1.5 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.6 This standard does not purport to address all of thesafety concerns, if an
9、y, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accor-dance with internation
10、ally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2A276/A276M
11、Specification for Stainless Steel Bars andShapesB160 Specification for Nickel Rod and BarB211 Specification for Aluminum and Aluminum-AlloyRolled or Cold Finished Bar, Rod, and WireD1193 Specification for Reagent WaterE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of
12、 a Test MethodG32 Test Method for Cavitation Erosion Using VibratoryApparatusG40 Terminology Relating to Wear and ErosionG73 Test Method for Liquid Impingement Erosion UsingRotating Apparatus2.2 ASTM Adjuncts:Manufacturing Drawings of the Apparatus33. Terminology3.1 See Terminology G40 for definitio
13、ns of terms relating tocavitation erosion. For convenience, definitions of some im-portant terms used in this test method are reproduced below.3.2 Definitions:3.2.1 cavitation, nthe formation and subsequent collapse,within a liquid, of cavities or bubbles that contain vapor or amixture of vapor and
14、gas.1This test method is under the jurisdiction of ASTM Committee G02 on Wearand Erosion and is the direct responsibility of Subcommittee G02.10 on Erosion bySolids and Liquids.Current edition approved Nov. 1, 2017. Published December 2017. Originallyapproved in 1995. Last previous edition approved
15、in 2010 as G134 95 (2010)1.DOI: 10.1520/G0134-17.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available f
16、rom ASTM International Headquarters. Order Adjunct No.ADJG0134.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization establ
17、ished in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1Mon Apr 30 08 3.2.1.1 DiscussionCavitation originates from a local de-crease in hydrostatic pressure in th
18、e liquid, usually producedby motion of the liquid (see flow cavitation) or of a solidboundary (see vibratory cavitation). It is distinguished in thisway from boiling, which originates from an increase in liquidtemperature.3.2.1.2 DiscussionThe term cavitation, by itself, shouldnot be used to denote
19、the damage or erosion of a solid surfacethat can be caused by it; this effect of cavitation is termedcavitation damage or cavitation erosion. To erode a solidsurface, bubbles or cavities must collapse on or near thatsurface. G403.2.2 cavitation erosion, nprogressive loss of originalmaterial from a s
20、olid surface due to continued exposure tocavitation. G403.2.3 cumulative erosion, nin cavitation and impingementerosion, the total amount of material lost from a solid surfaceduring all exposure periods since it was first exposed tocavitation or impingement as a newly-finished surface. (Morespecific
21、 terms that may be used are cumulative mass loss,cumulative volume loss,orcumulative mean depth of erosion.See also cumulative erosion-time curve.)3.2.3.1 DiscussionUnless otherwise indicated by thecontext, it is implied that the conditions of cavitation orimpingement have remained the same througho
22、ut all exposureperiods, with no intermediate refinishing of the surface. G403.2.4 cumulative erosion rate, nthe cumulative erosion ata specified point in an erosion test divided by the correspond-ing cumulative exposure duration; that is, the slope of a linefrom the origin to the specified point on
23、the cumulativeerosion-time curve. (Synonym: average erosion rate) G403.2.5 cumulative erosion-time curve, nin cavitation andimpingement erosion, a plot of cumulative erosion versuscumulative exposure duration, usually determined by periodicinterruption of the test and weighing of the specimen. This
24、isthe primary record of an erosion test. Most othercharacteristics, such as the incubation period, maximum ero-sion rate, terminal erosion rate, and erosion rate-time curve, arederived from it. G403.2.6 flow cavitation, ncavitation caused by a decrease inlocal pressure induced by changes in velocity
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTM G134 17 Standard Test Method for Erosion of Solid Materials by Cavitating Liquid Jet

链接地址:http://www.mydoc123.com/p-286626.html