IEEE C57.104-2008 Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers《油浸式变压器中产生气体的描述指南》.pdf
《IEEE C57.104-2008 Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers《油浸式变压器中产生气体的描述指南》.pdf》由会员分享,可在线阅读,更多相关《IEEE C57.104-2008 Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers《油浸式变压器中产生气体的描述指南》.pdf(39页珍藏版)》请在麦多课文档分享上搜索。
1、IEEE Std C57.104-2008(Revision ofIEEE Std C57.104-1991)IEEE Guide for the Interpretation ofGases Generated in Oil-ImmersedTransformersIEEE3 Park Avenue New York, NY 10016-5997, USA2 February 2009 IEEE Power 2) the use of fixed instruments for detecting and determining the quantity of combustible gas
2、es present in gas-blanketed equipment; 3) obtaining samples of gas and oil from the transformer for laboratory analysis; 4) laboratory methods for analyzing the gas blanket and the gases extracted from the oil; and 5) interpreting the results in terms of transformer serviceability. The intent is to
3、provide the operator with useful information concerning the serviceability of the equipment. An extensive bibliography on gas evolution, detection, and interpretation is included. Keywords: gas analysis, oil, oil-filled transformers, transformers The Institute of Electrical and Electronics Engineers
4、, Inc. 3 Park Avenue, New York, NY 10016-5997, USA Copyright 2009 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 2 February 2009. Printed in the United States of America. IEEE is a registered trademark in the U.S. Patent +1 978 750 8400. Permission to p
5、hotocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center. iv Copyright 2009 IEEE. All rights reserved. Introduction This introduction is not part of IEEE Std C57.104-2008, IEEE Guide for the Interpretation of Gases Generat
6、ed in Oil-Immersed Transformers. IEEE Std C57.104-1991 was officially withdrawn by IEEE based on recommendation by the Transformers Committee of the IEEE Power solubility and degree of saturation of various gases in oil; the type of oil preservation system; the type and rate of oil circulation; the
7、kinds of material in contact with the fault; and finally, variables associated with the sampling and measuring procedures themselves. Because of the variability of acceptable gas limits and the significance of various gases and generation rates, a consensus is difficult to obtain. The principal obst
8、acle in the development of fault interpretation as an exact science is the lack of positive correlation of the fault-identifying gases with faults found in actual transformers. The result of various ASTM testing round-robins indicates that the analytical procedures for gas analysis are difficult, ha
9、ve poor precision, and can be wildly inaccurate, especially between laboratories. A replicate analysis confirming a diagnosis should be made before taking any major action. This guide is intended to provide guidance on specific methods and procedures that may assist the transformer operator in decid
10、ing on the status and continued operation of a transformer that exhibits combustible gas formation. However, operators must be cautioned that, although the physical reasons for gas formation have a firm technical basis, interpretation of that data in terms of the specific cause or causes is not an e
11、xact science, but it is the result of empirical evidence from which rules for interpretation have been derived. Hence, exact causes or conditions within transformers may not be inferred from the various procedures. The continued application of the rules and limits in this guide, accompanied by actua
12、l confirmation of the causes of gas formation, will result in continued refinement and improvement in the correlation of the rules and limits for interpretation. Individual experience with this guide will assist the operators in determining the best procedure, or combination of procedures, for each
13、specific case. Some of the factors involved in the decision of the operator are: the type of oil preservation system, the type and frequency of the sampling program, and the analytical facilities available. However, whether used separately or as complements to one another, the procedures disclosed i
14、n this guide all provide the operator with useful information concerning the serviceability of the equipment. 2. Normative references The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cite
15、d in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies. ASTM D 923, Standard Practices for Sampling Electrical Insulati
16、ng Liquids.1ASTM D 2945, Standard Test Method for Gas Content of Insulating Oils. 1ASTM publications are available from the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, USA (http:/www.astm.org/). IEEE Std C57.104-2008 IEEE Guide for the Interpr
17、etation of Gases Generated in Oil-Immersed Transformers 3 Copyright 2009 IEEE. All rights reserved. ASTM D 3305, Standard Practice for Sampling Small Gas Volume in a Transformer. ASTM D 3612, Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography. 3.
18、Definitions, acronyms, and abbreviations For the purposes of this guide, the following terms and definitions apply. The Authoritative Dictionary of IEEE Standards Terms should be referenced for terms not defined in this clause. 3.1 Definitions 3.1 key gases: Gases generated in oil-filled transformer
19、s that can be used for qualitative determination of fault types, based on which gases are typical or predominant at various temperatures. 3.2 partial discharge: An electric discharge that only partially bridges the insulation between conductors, and that may or may not occur adjacent to a conductor.
20、 3.2 Acronyms and abbreviations TCG total combustible gas TDCG total dissolved combustible gas 4. General theory The two principal causes of gas formation within an operating transformer are thermal and electrical disturbances. Conductor losses due to loading produce gases from thermal decomposition
21、 of the associated oil and solid insulation. Gases are also produced from the decomposition of oil and insulation exposed to arc temperatures. Generally, where decomposition gases are formed principally by ionic bombardment, there is little or no heat associated with low-energy discharges and partia
22、l discharge. 4.1 Cellulosic decomposition The thermal decomposition of oil-impregnated cellulose insulation produces carbon oxides (CO, CO2) and some hydrogen or methane (H2, CH4) due to the oil (CO2is not a combustible gas). The rate at which they are produced depends exponentially on the temperatu
23、re and directly on the volume of material at that temperature. Because of the volume effect, a large, heated volume of insulation at moderate temperature will produce the same quantity of gas as a smaller volume at a higher temperature. 4.2 Oil decomposition Mineral transformer oils are mixtures of
24、many different hydrocarbon molecules, and the decomposition processes for these hydrocarbons in thermal or electrical faults are complex. The fundamental steps are the breaking of carbonhydrogen and carboncarbon bonds. Active hydrogen atoms and hydrocarbon fragments are formed. These free radicals c
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- IEEEC571042008GUIDEFORTHEINTERPRETATIONOFGASESGENERATEDINOILIMMERSEDTRANSFORMERS 油浸式 变压器 产生 气体 描述 指南

链接地址:http://www.mydoc123.com/p-1366121.html