2020高考数学刷题首选卷单元测试(七)平面解析几何文(含解析).doc
《2020高考数学刷题首选卷单元测试(七)平面解析几何文(含解析).doc》由会员分享,可在线阅读,更多相关《2020高考数学刷题首选卷单元测试(七)平面解析几何文(含解析).doc(14页珍藏版)》请在麦多课文档分享上搜索。
1、1单元质量测试(七)时间:120分钟 满分:150分第卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1直线3 x y10的倾斜角大小为( )3A30 B60 C120 D150答案 C解析 k , 120故选C33 32“ a2”是“直线 y ax2与 y x1垂直”的( )a4A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案 A解析 由 a2得两直线斜率满足(2) 1,即两直线垂直;由两直线垂直得( a) 124 a4,解得 a2故选A3已知双曲线 1( a0, b0)的离心率为 ,则双曲线的渐近线方程为( )y2a2 x2b2 3A y
2、 x B y x22 2C y2 x D y x12答案 A解析 由题意得,双曲线的离心率 e ,故 ,故双曲线的渐近线方程为 y xca 3 ba 2 ab 22x4(2018邯郸摸底)已知 F1, F2分别是双曲线 C: 1的左、右焦点, P为双曲x29 y27线 C右支上一点,且| PF1|8,则 ( )|F1F2|PF2|A4 B3 C2 D22答案 A解析 2由 1知 c2 a2 b216,所以| F1F2|2 c8,由双曲线定义知| PF1| PF2|2 ax29 y276,所以| PF2|2或| PF2|14( P在右支上,舍去),所以 4|F1F2|PF2|5(2018福州模拟
3、)已知双曲线 C的两个焦点 F1, F2都在 x轴上,对称中心为原点,离心率为 若点 M在 C上,且 MF1 MF2, M到原点的距离为 ,则 C的方程为( )3 3A 1 B 1x24 y28 y24 x28C x2 1 D y2 1y22 x22答案 C解析 显然 OM为Rt MF1F2的中线,则| OM| |F1F2| c 又 e ,得 a1进而 b212 3 ca 3a 3 c2 a22故 C的方程为 x2 1,故选Cy226设 F1, F2是椭圆 E: 1( ab0)的左、右焦点, P为直线 x 上一点, F2PFx2a2 y2b2 3a21是底角为30的等腰三角形,则 E的离心率为
4、( )A B C D12 23 34 45答案 C解析 令 c 如图,据题意, |F2P| F1F2|, F1PF230, F1F2P120,a2 b2 PF2x60,| F2P|2 3 a2 c(3a2 c)| F1F2|2 c,3 a2 c2 c,3 a4 c, ,即椭圆的离心率为 故选Cca 34 347(2018大庆质检一)已知等轴双曲线 C的中心在原点,焦点在 x轴上, C与抛物线 y212 x的准线交于 A, B两点,| AB|2 ,则 C的实轴长为( )5A B2 C2 D42 23答案 D解析 因为抛物线 y212 x的准线为 x3,而等轴双曲线 C的焦点在 x轴上,所以 A,
5、 B两点关于 x轴对称,且| AB|2 ,所以点 (3, )在双曲线上,代入双曲线的方程 x2 y2 a2中得95 55 a24,所以 a2,即2 a4,故双曲线 C的实轴长为4故选D8(2018乌鲁木齐一诊)已知抛物线 y24 x与圆 F: x2 y22 x0,过点 F作直线 l,自上而下顺次与上述两曲线交于点 A, B, C, D,则下列关于| AB|CD|的值的说法中,正确的是( )A等于1 B等于16C最小值为4 D最大值为4答案 A解析 圆 F的方程为( x1) 2 y21设直线 l的方程为 x my1代入 y24 x得 y24 my40, y1y24设点 A(x1, y1), D(
6、x2, y2)则| AF| x11,| DF| x21,所以| AB| AF|BF| x1,| CD| DF| CF| x2,所以| AB|CD| x1x2 (y1y2)21故选A1169(2018沈阳质检一)已知双曲线 C: 1( a0, b0), O为坐标原点, F为双x2a2 y2b2曲线的右焦点,以 OF为直径的圆与双曲线的渐近线交于一点 A,若 AFO ,则双曲线 C的 6离心率为( )A2 B C D3 2233答案 A解析 如图所示,在 AOF中, OAF90,又 AFO30,所以 AOF60,故 tan60ba ,所以 e 2,故选A31 b2a210(2019唐山模拟)已知
7、F1, F2为双曲线 : 1( a0)的左、右焦点, P为x2a2 y2204双曲线 左支上一点,直线 PF1与双曲线 的一条渐近线平行, PF1 PF2,则 a( )A B C4 D 55 2 5答案 A解析 如图,记 PF2与双曲线的渐近线 l的交点为 M与 PF1平行的双曲线的渐近线为 yx,由 PF1 PF2,得 PF2 l,则 F2(c,0)到直线 l: x y0的距离为 d 25a 25a25ac25a2 122 而 OMF2为直角三角形,所以| OM| a又 OM25ca2 20 5 |OF2|2 |MF2|2 c2 20 F1P, O是 F1F2的中点,所以| F1P|2| O
8、M|2 a,| PF2|2| MF2|4 而由双曲线的定义5,有| PF2| PF1|2 a,即4 2 a2 a,所以 a 故选 A5 511(2019衡阳模拟)已知椭圆 E: 1( a b0)的左焦点为 F1, y轴上的点 P在x2a2 y2b2椭圆以外,且线段 PF1与椭圆 E交于点 M若| OM| MF1| |OP|,则椭圆 E的离心率为( 33)A B C 1 D12 32 3 3 12答案 C解析 过 M作 MH x轴于点 H,由| OM| MF1|,知 H为 OF1的中点,进而 MH为 PF1O的中位线,则 M为 F1P的中点从而依题意,有 |F1P| |OP|,即 sin OF1
9、P,则 OF1P 则12 33 32 |OP|F1P| 3 MF1O是边长为 c的等边三角形连接 MF2(F2为椭圆 E的右焦点),则由 OM OF1 OF2可知 F1MF2 故 e 1故选C 2 2c2a |F1F2|MF1| |MF2| 2c1 3c 21 3 312(2018合肥质检一)如图,已知椭圆 1( a0)的左、右焦点分别为 F1, F2x2a2 y24,过 F1的直线交椭圆于 M, N两点,交 y轴于点 H若 F1, H是线段 MN的三等分点,则 F2MN的5周长为( )A20 B10 C2 D45 5答案 D解析 解法一:设点 H(0, t),00,解得1 a314(2018
10、浙江宁波质检)与圆( x2) 2 y21外切,且与直线 x10相切的动圆圆心的轨迹方程是_答案 y28 x解析 设动圆圆心为 P(x, y),则 | x1|1,依据抛物线的定义结合题意可知动x 22 y2圆圆心 P(x, y)的轨迹是以(2,0)为焦点, x2为准线的抛物线,故方程为 y28 x15(2018贵阳模拟)已知过抛物线 y22 px(p0)的焦点 F,且倾斜角为60的直线与抛物线交于 A, B两点,若| AF| BF|,且| AF|2,则 p_6答案 1解析 过点 A作 AM x轴交 x轴于点 M,由 AFM60,| AF|2得| FM|1,且点 A到抛物线的准线 l: x 的距离
11、为2,而| FM|1,所以抛物线的焦点 F到准线的距离为1,即 p1p216已知椭圆 C: 1,点 M与 C的焦点不重合若 M关于 C的焦点的对称点分别为 Ax29 y24, B,线段 MN的中点在 C上,则| AN| BN|_答案 12解析 解法一:由椭圆方程知椭圆 C的左焦点为F1( ,0),右焦点为 F2( ,0)则 M(m, n)关于 F1的对称点为 A(2 m, n),5 5 5关于 F2的对称点为 B(2 m, n),设 MN中点为( x, y),所以 N(2x m,2 y n)5所以| AN| BN| 2x 252 2y22x 252 2y22 , x 52 y2 x 52 y2
12、故由椭圆定义可知| AN| BN|2612解法二:根据已知条件画出图形,如图设 MN的中点为 P, F1, F2为椭圆 C的焦点,连接 PF1, PF2显然 PF1是 MAN的中位线, PF2是 MBN的中位线,| AN| BN|2| PF1|2|PF2|2(| PF1| PF2|)2612三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(2018河南郑州检测)(本小题满分10分)已知坐标平面上动点 M(x, y)与两个定点P(26,1), Q(2,1),且| MP|5| MQ|(1)求点 M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为 C,过点 N
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 首选 单元测试 平面 解析几何 解析 DOC
