NEMA C29 1-2018 Test Methods for Electrical Power Insulators.pdf
《NEMA C29 1-2018 Test Methods for Electrical Power Insulators.pdf》由会员分享,可在线阅读,更多相关《NEMA C29 1-2018 Test Methods for Electrical Power Insulators.pdf(25页珍藏版)》请在麦多课文档分享上搜索。
1、NEMA Standards PublicationNational Electrical Manufacturers AssociationANSI/NEMA C29.1-2018Test Methods for Electrical Power InsulatorsApproved as an American National Standard ANSI Approval Date of Final Action: January 8, 2018 ANSI/NEMA C29.1-2018 American National Standard for Test Methods for El
2、ectrical Power Insulators Published by National Electrical Manufacturers Association 1300 North 17thStreet, Suite 900 Rosslyn, VA 22209 www.nema.org 2018 National Electrical Manufacturers Association. All rights, including translation into other languages, reserved under the Universal Copyright Conv
3、ention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American copyright conventions. 2018 National Electrical Manufacturers Association NOTICE AND DISCLAIMER The information in this publication was considered technically sound by the consensus
4、 of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document. American National Standards Institute (ANSI) standards and gui
5、deline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA admin
6、isters the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guidel
7、ine publications. NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims
8、 and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the pe
9、rformance of any individual manufacturer or sellers products or services by virtue of this standard or guide. In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perfor
10、m any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other stan
11、dards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication. NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEM
12、A does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safetyrelated information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier
13、 or maker of the statement. ANSI/NEMA C29.1-2018 Page i 2018 National Electrical Manufacturers Association Foreword (This foreword is not part of American National Standard C29.1-2016) This standard comprises a manual of procedures to be followed in making tests to determine the characteristics of i
14、nsulators used on electric power systems. This standard is not an insulator specification, but rather a test method to be used in conjunction with insulator specifications. Suggestions for improvement of this standard will be welcome. They should be sent to National Electrical Manufacturers Associat
15、ion, 1300 North 17thStreet, Suite 900, Rosslyn, VA 22209. This standard was processed and approved for submittal to ANSI by Accredited Standards Committee on Insulators for Electric Power Lines, C29. Committee approval of the standard does not necessarily imply that all committee members voted for a
16、pproval. At the time it approved this standard, the ASC C-29 Committee had the following members: Arjan Jagtiani, Chairman Gerard Winstanley, Secretary Name Organization Interest Category N. DeSantis Line Works Engineering General T. Grisham GRISCUT, LTD. General A. Jagtiani Sargent it is a specimen
17、 that is undamaged in any way which would Influence the result of the test. 2.5.2 Leakage Distance, The leakage distance of an insulator is the sum of the shortest distances measured along the insulating surfaces between the conductive parts, as arranged for dry flashover test. (Surfaces coated with
18、 semiconducting glaze shall be considered as effective leakage surfaces, and leakage distance over such surfaces shall be included in the leakage distance.) 2.5.3 Dry-Arcing Distance. The dry-arcing distance of an Insulator is the shortest distance through the surrounding medium between terminal ele
19、ctrodes, or the sum of the distances between intermediate electrodes, whichever is the shorter, with the insulator mounted for dry flashover test. 2.5.4 Radio-Influence Voltage. The radio-influence voltage of an insulator is the radio-frequency voltage measured under specified conditions. Radio-infl
20、uence voltage tests are tests as described in 4.9. 3 Test Specimen Mounting for Electrical Tests 3.1 Suspension Insulators 3.1.1 Mounting Arrangement. Unless otherwise specified, the test specimen (unit or string) shall be suspended vertically at the end of a grounded conductor so that the vertical
21、distance from the uppermost point of the insulator hardware to the supporting structure shall be not less than 3 ft. (914 mm). 3.1.2 Energized Electrode. The energized or bottom electrode or conductor shall be a straight, smooth rod or tube having an outside diameter not less than 3/4 inch (19 mm) n
22、or more than 1-1/2 in. (38 mm). It shall be coupled to the lower integral fitting of the test specimen so that the distance from the lowest edge of the insulator shell to the upper surface of the electrode shall be between 0.5 and 0.7 of the diameter of the lowest insulator. The conductor shall be h
23、orizontal and at right angles to the axis of the test specimen. The conductor shall be of such length that flashover will not be initiated at the electrode ends. 3.1.3 Proximity of Other Objects. No objects, other than parts of the test assembly, shall be nearer the test specimen or energized electr
24、odes than 1 times the test-specimen dry-arcing distance, with a minimum allowable distance of 3 ft. (914 mm). ANSI/NEMA C29.1-2018 Page 4 2018 National Electrical Manufacturers Association 3.2 Line Insulators (Pin, Post) 3.2.1 Mounting Arrangement (Crossarm). Unless otherwise specified, the supporti
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NEMAC2912018TESTMETHODSFORELECTRICALPOWERINSULATORSPDF

链接地址:http://www.mydoc123.com/p-994040.html