2019届高考数学二轮复习第二篇专题通关攻略专题5统计与概率专题能力提升练十四2.5.2概率、随机变量及其分布列.doc
《2019届高考数学二轮复习第二篇专题通关攻略专题5统计与概率专题能力提升练十四2.5.2概率、随机变量及其分布列.doc》由会员分享,可在线阅读,更多相关《2019届高考数学二轮复习第二篇专题通关攻略专题5统计与概率专题能力提升练十四2.5.2概率、随机变量及其分布列.doc(20页珍藏版)》请在麦多课文档分享上搜索。
1、1专题能力提升练 十四 概率、随机变量及其分布列(45 分钟 80 分)一、选择题(每小题 5 分,共 30 分)1.(2018邯郸一模)某电视台夏日水上闯关节目中的前三关的过关率分别为 0.8,0.7,0.6,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为 ( )A.0.56 B.0.336 C.0.32 D.0.224【解析】选 D.该选手只闯过前两关的概率为 0.80.7(1-0.6)=0.224.2.从数字 1,2,3,4,5 中任取两个不同的数字构成一个两位数,则这个数大于 30 的概率为( )A. B. C. D.16 13 35【
2、解析】选 D.由题意知,试验发生包含事件是从数字 1,2,3,4,5 中任取两个不同的数字,构成一个两位数,共 =20 种结果 .满足条件的事件可以列举出 :31,32,2534,35,41,42,43,45,51,52,53,54,共有 12 个,根据古典概型的概率公式,得到 P= = .1220353.袋中装有 2 个红球,3 个黄球,有放回地抽取 3 次,每次抽取 1 球,则 3 次中恰有 2 次抽到黄球的概率是 ( )A. B. C. D.25 35【解析】选 D.袋中装有 2 个红球,3 个黄球,有放回地抽取 3 次,每次抽取 1 球,每次取到黄球的概率 p1= ,35所以 3 次中
3、恰有 2 次抽到黄球的概率是:P= = .4.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为和 ,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为23342( )A. B. C. D.34 23 57【解析】选 D.根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是 + = .23(1-34)34(1-23)5.如图,圆 O:x2+y2=16 内的正弦曲线 y=sin x,x-,与 x 轴围成的区域记为 M(图中阴影部分),随机向圆 O 内投一个点 P,记 A 表示事件“点 P 落在第一象限”,B 表示事件“点
4、 P 落在区域 M 内”,则概率 P(B|A)= ( )A. B. C. D.18 14 12 12【解析】选 C.圆 O 的面积为 16,阴影部分的面积为S=2 sin xdx=-2cos x =4,所以 P(AB)= = ,P(A)= ,18 14所以 P(B|A)= = .()() 126.某市 1 路公交车每日清晨 6:30 于始发站 A 站发出首班车,随后每隔 10 分钟发出下一班车.甲、乙二人某日清晨均需从 A 站搭乘该路公交车上班,甲在 6:356:55 内随机到达 A 站候车,乙在 6:507:05 内随机到达 A 站候车,则他俩能搭乘同一班公交车的概率是( )A. B. C.
5、 D.16 14 133【解析】选 A.建立如图所示的直角坐标系,x,y 分别表示甲、乙二人到达 A 站的时刻,则坐标系中每个点(x,y)可对应某日甲、乙二人到达车站的时刻的可能性.根据题意,甲、乙二人到达 A 站时间的所有可能组成的可行域是图中粗线围成的矩形,而其中二人可搭乘同一班车对应的区域为黑色区域.根据几何概型概率计算公式可知,所求概率为 = .16【加固训练】甲、乙二人约定 7:10 在某处会面,甲在 7:007:20 内某一时刻随机到达,乙在 7:057:20内某一时刻随机到达,则甲至少需等待乙 5 分钟的概率是 ( )A. B. C. D.18 14 38 58【解析】选 C.建
6、立直角坐标系如图,x,y 分别表示甲、乙二人到达的时刻,则坐标系中每个点(x,y)可对应甲、乙二人到达时刻的可能性.则甲至少等待乙5 分钟应满足的条件是 y-x5,其构成的区域为如图阴影部分,则所求的概率为 P= = .38二、填空题(每小题 5 分,共 10 分)7.已知随机变量 X 服从正态分布 N(2, 2),且 P(0X2)=0.3,则 P(X4)=_. 【解析】由题意结合正态分布的性质可知:P(2X4)=0.3,则 P(X4)= =0.2.4答案:0.28.已知点 P(3,0),在O:x 2+y2=1 上任取一点 Q,则|PQ| 的概率为_.13【解析】根据题意,可设点 Q 的坐标为
7、(cos ,sin ),(-,所以|PQ| 2=(cos -3) 2+sin2=1-6cos +9=13,解得 cos =- ,12所以 = ,结合图形利用几何概型的概率公式可得所求概率为 P= = .23 23答案:23【加固训练】(2017重庆一模)函数 f(x)=x2-2x-3,x-4,4,任取一点 x0-4,4,则 f(x0)0的概率为_. 【解析】由 x2-2x-30,解得:-1x3,所以使 f(x0)0 成立的概率 P= = .3-(-1)4-(-4)12答案:12三、解答题(每小题 10 分,共 40 分)9.随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职
8、工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足 4 千步为“健步常人”,不少于 16 千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人 36 名教职工,其每天的走步情况统计如下:步数 0,4 000) 4 000,16 000) 16 000,+)人数 6 18 12现对抽查的 36 人采用分层抽样的方式选出 6 人,从选出的 6 人中随机抽取 2 人进行调查.(1)求这两人健步走状况一致的概率.5(2)求“健步超人”人数 X 的分布列与数学期望.【解析】(1)记“这 2 人健步走状况一致”为事件 A,则 P(A)= = .23+2226(2)X
9、 的可能取值为 0,1,2,所以 P(X=0)= = = ,2426 25P(X=1)= = ,P(X=2)= = .141226所以 X 的分布列为 X 0 1 2P25所以 E(X)=0 +1 +2 = .25 23【加固训练】在 10 件产品中,有 3 件一等品,4 件二等品,3 件三等品.从这 10 件产品中任取 3 件,求:(1)取出的 3 件产品中一等品件数 X 的分布列和数学期望.(2)取出的 3 件产品中一等品件数多于二等品件数的概率.【解析】(1)由于从 10 件产品中任取 3 件的结果为 ,从 10 件产品中任取 3 件,其中恰有 k 件一等品的结果数为 ,那么从 10 件
10、产品中任取 3 件,其中恰有 k 件一等品的概率为 P(X=k)= ,k=0,1,2,3.33-7310所以随机变量 X 的分布列是X 0 1 2 3P2140 11206所以 X 的数学期望 E(X)=0 +1 +2 +3 = .2140 1120(2)设“取出的 3 件产品中一等品件数多于二等品件数”为事件 A,“恰好取出 1 件一等品和 2 件三等品”为事件 A1“恰好取出 2 件一等品”为事件 A2,“恰好取出 3 件一等品”为事件 A3,由于事件 A1,A2,A3彼此互斥,且 A=A1A 2A 3而 P(A1)= = ,P(A2)=P(X=2)= ,P(A3)=P(X=3)= ,11
11、20所以取出的 3 件产品中一等品件数多于二等品件数的概率为P(A)=P(A1)+P(A2)+P(A3)= + + = .112010.(2018遂宁一模) 1993 年,国际数学教育委员会(ICMI)专门召开过“性别与数学教育”国际研讨会,会议讨论内容之一是视觉和空间能力是否与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取 50 名同学(男 30 女 20),给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答.选择情况如下表:(单位:人)几何题 代数题 总计男同学 22 8 30女同学 8 12 20总计 30 20 50(1)能否据此判断在犯错误的概率
12、不超过 0.025 的前提下认为视觉和空间能力与性别有关?(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在 57 分钟,女生乙每次解答一道几何题所用的时间在 68 分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择几何题的 8 名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生中被抽到的人数为 X,求 X 的分布列及数学期望 E(X).附表及公式7P(K2k 0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828K2= .(-)2(+
13、)(+)(+)(+)【解析】(1)由表中数据得 K2的观测值k= = 5.5565.024,50(2212-88)230203020所以根据统计在犯错误的概率不超过 0.025 的前提下认为视觉和空间能力与性别有关.(2)设甲、乙解答一道几何题所用时间分别为 x,y 分钟,则基本事件满足的区域为57,68,如图所示,设事件 A 为“乙比甲先做完此道题”,则满足的区域为 xy,所以由几何概型,得P(A)= = ,18即乙比甲先解答完的概率为 .18(3)由题可知在选择做几何题的 8 名女生中任意抽取两人,抽取方法有 =28 种,其中甲、28乙两人没有一个人被抽取到有 =15 种;恰有一人被抽到有
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 二轮 复习 第二 专题 通关 攻略 统计 概率 能力 提升 十四 252 随机变量 及其 分布 DOC

链接地址:http://www.mydoc123.com/p-937007.html