CEPT ERC REPORT 97-2000 Fixed Wireless Access (FWA) Spectrum Engineering & Frequency Management Guidelines (Qualitative) (Naples)《固定无线接入(FWA)频谱工程与频率管理指南(定性) 那不勒斯》.pdf
《CEPT ERC REPORT 97-2000 Fixed Wireless Access (FWA) Spectrum Engineering & Frequency Management Guidelines (Qualitative) (Naples)《固定无线接入(FWA)频谱工程与频率管理指南(定性) 那不勒斯》.pdf》由会员分享,可在线阅读,更多相关《CEPT ERC REPORT 97-2000 Fixed Wireless Access (FWA) Spectrum Engineering & Frequency Management Guidelines (Qualitative) (Naples)《固定无线接入(FWA)频谱工程与频率管理指南(定性) 那不勒斯》.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、 STD*CEPT ERC REPORT 97-ENGL i?OOO 232b414 0017086 OBY ERC REPORT 97 European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) FIXED WIRELESS ACCESS (FWA) SPECTRUM ENGINEERING this point has now also been recognised within the
2、 ITU-R and new Recommendations on such block-based frequency arrangements are under development. INDEX TABLE 1 INTRODUCTION 1 1.1 ADDITIONAL GUIDANCE 1 1.2 TERMINOLOGY 1 FREQUENCY ASSIGNMENT GUIDANCE 1 2 3 FREQUENCY PLANS . 2 3.1 GENERAL 2 3.2.1 General . 3 3.2.2 implementation . 3 4 DEPLOYMENT . 3
3、3.2 TDD ASSIGNMENTS IN BANDS WITH PAIRED SPECTRUM 3 5 EQUIPMENT DESIGN . 4 GLOSSARY AND ABBREVIATIONS 4 STD-CEPT ERC REPORT 97-ENGL 2000 232b1i14 0017089 893 W ERC REPORT 97 Page 1 FiXED WIRELESS ACCESS (FWA) SPECTRUM ENGINEERING sub-bands should not be too small to preserve spectrum efficiency sinc
4、e any guard bands must be accounted for, and wherever possible Co-sharing should be encouraged. take note that generally best spectrum efficiency is obtained by use of contiguous rather than non-contiguous arrangements, taking into consideration systems design and necessary frequency separation issu
5、es. plan for traffic growth, and to remember that in general one needs continuous spectrum, although some systems may assist planning in using non-continuous spectrum. take note that, whereas assigning spectrum to several potential operators across a band facilitates comparison of competitive propos
6、als by these operators, it may be equally acceptable to facilitate competition by use of other bands. STDSCEPT ERC REPORT 97-ENGL 2000 2326414 OOL7090 ERC REPORT 97 Page 2 (2.9) (2.10) (2.1 1) (2.12) (2.13) (2.14) take note that if too many operators are assigned spectrum in a band, this may be coun
7、ter-productive in terms of spectrum efficiency. incorporate suitable guard bands to mitigate interference, taking account of the different mix of technologies used, in order to attain an acceptable compromise between performance degradation and necessary protectiodmitigation measures, including guar
8、d bands. specify for FDD systems, a consistent plan for the forward (CS to TS) and reverse (TS to CS) sub-band frequencies. it may be assumed that generally the forward (down) link should be at the higher frequency, similar to accepted usage in most cellular and satellite systems, but exceptional ca
9、ses may dictate the reverse. Account must be taken of the added complications where mixed up/down directions are used. take account that for TDD systems the designation of forward and reverse link directions is no longer possible, and in this case additional interference scenarios need to be conside
10、red. take account that when considering accommodation of P-MP with P-P systems in the same band, e.g. for the 24.5 - 26.5 GHz band, one possible approach can be to make appropriate regionaUnationa1 allocations for each FS type from opposite ends of the sub-bands, with the proportion of total band us
11、age for each type perhaps determined by market or other needs; the more conventional approach is to apportion parts of the band for the two FS types on an a priori basis. note that in some cases the spectrum assigned for P-MP applications could in part be used for in-band infrastructure support for
12、the P-MP systems. Where this is done, due account must be taken of the any regulatory or other rules / requirements set for these virtual P-P sub-links. take care when comparing different technologies and their spectrum usage, taking account that there is as yet no definitive guide to comparing spec
13、trum efficiency in a simple manner; consideration needs to be taken of cluster size, consequences of mixed technologies according to these guidelines, quality and grade of service and other factors. use actualhypical parameters, wherever possible, for the calculation of the compatibility factors, ra
14、ther than just the minimum requirement limits from the corresponding ETSUother standards, and take account of the sensitivity of the results to these parameters. Further studies are underway to consider interference between different FWA systems, and their compatibility with systems in other service
15、s. 3 FREQUENCY PLANS 3.1 General For geographically Co-deployed FWA systems, it is necessary to: (3.1) take note that to date FS frequency plans have generally been prepared for P-P telecommunications systems featuring use of FDD, with symmetric channel / sub-band widths which may not be appropriate
16、 for all FWA systems. take account that services with variable asymmetry are often needed, especially for broader band applications. take account that asymmetry may be achieved by: (3.2) (3.3) using asymmetrical TDD. pairing narrower channels in one direction with wider channels in the other using d
17、ifferent orders of modulation in one direction from that used in the other (3.4) take account that having narrower channels in one direction and wider in the other can accommodate traffic efficiently only where this traffic exhibits a fmed asymmetry matching the ratio of the channehb-band widths. Su
18、ch a fixed sub-bands approach is inherently less efficient for variably asymmetric traffic which may exhibit only over time a general bias in the traffic in favour of the channel direction enjoying the wider band. take note that it is possible in some cases to “pair“ up and down links in widely sepa
19、rated bands, for example an up link within one band together with a narrower down link within a lower band to provide fixed asymmetry for certain MWS applications. take note that some MWS systems, especially those derived in concept from broadcast/distribution type systems, may have a bi-directional
20、 rather than unidirectional “interactivity“ channeusub-band. All the guidance provided elsewhere in this document should also apply to this situation. (3.5) (3.6) as opposed to the type offixed asymmetry needed by, for example, video surveillance type systems with narrowband down-link capacity and w
21、ideband upstream capacity. STD*CEPT ERC REPORT 97-ENGLZ000 5326414 0017091 441 ERC REPORT 97 Page 3 (3.7) take account that different orders of modulation may be used for the two traffic directions to offer a limited degree of asymmetry (and could result in different characteristics in terms of rang
22、drobustness of the up- and down-links) and that this may permit some variable asymmetry if the equipment can dynamically adapt the modulation scheme independently in the two directions. take account that TDD with variable time allocated to up- and down-link directions can provide a manner of achievi
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CEPTERCREPORT972000FIXEDWIRELESSACCESSFWASPECTRUMENGINEERINGFREQUENCYMANAGEMENTGUIDELINESQUALITATIVENAPLES

链接地址:http://www.mydoc123.com/p-592939.html