ATIS 1000077-2017 5G Security Requirements.pdf
《ATIS 1000077-2017 5G Security Requirements.pdf》由会员分享,可在线阅读,更多相关《ATIS 1000077-2017 5G Security Requirements.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、ATIS-1000077 ATIS Standard on 5G Security Requirements Alliance for Telecommunications Industry Solutions Approved January 11, 2017 Abstract This document contains draft security-related recommendations intended for 5th Generation mobile network (5G) standards development activities. ATIS-1000077 ii
2、 Foreword The Alliance for Telecommunications Industry Solutions (ATIS) serves the public through improved understanding between carriers, customers, and manufacturers. The Packet Technologies and Systems Committee (PTSC) develops and recommends standards and technical reports related to services, a
3、rchitectures, and signaling, in addition to related subjects under consideration in other North American and international standards bodies. PTSC coordinates and develops standards and technical reports relevant to telecommunications networks in the U.S., reviews and prepares contributions on such m
4、atters for submission to U.S. International Telecommunication Union Telecommunications Sector (ITU-T) and U.S. International Telecommunication Union Radiocommunication Sector (ITU-R) Study Groups or other standards organizations, and reviews for acceptability or per contra the positions of other cou
5、ntries in related standards development and takes or recommends appropriate actions. The mandatory requirements are designated by the word shall and recommendations by the word should. Where both a mandatory requirement and a recommendation are specified for the same criterion, the recommendation re
6、presents a goal currently identifiable as having distinct compatibility or performance advantages. The word may denotes a optional capability that could augment the standard. The standard is fully functional without the incorporation of this optional capability. Suggestions for improvement of this d
7、ocument are welcome. They should be sent to the Alliance for Telecommunications Industry Solutions, PTSC, 1200 G Street NW, Suite 500, Washington, DC 20005. At the time of consensus on this document, PTSC, which was responsible for its development, had the following leadership: M. Dolly, PTSC Chair
8、(AT Trust between human stakeholders holding responsibilities for different parts of 5G networks, between user and network operators and between users of the network (U2Ut); Trust that a human stakeholder has toward a system (U2Mt); 2Available at: . 35G-PPP Security Enablers Technical Roadmap (early
9、 vision) (PDF), available at: . 4Available at: , Section 5. ATIS-1000077 9 Trust that an automated system (machine) has in users that it interacts with, such as whether it believes the user is who they claim to be (M2Ut). 5G-ENSURE envisions defining a trust model ontology to enable the consistent e
10、ncoding of the assets, threats, and controls in 5G systems. This will then be used for modeling the system and ensuring the system is designed to mitigate threats as they relate to the complex and dynamic nature of trust across 5G system providers, users, and automated systems. While the 5G-ENSURE e
11、ffort is still early in its development and its scope is focused on the EU, the security topics being matured and documented are clearly relevant to the FCCs communicated areas of interest. The TACs perspective of the EU 5G efforts like 5G-ENSURE is that such efforts may serve as useful technical so
12、lution references for U.S.-based 5G security standards activities. The intent of highlighting the EU activities is not to imply a desire to influence them, but rather to learn from their progress on addressing common technical challenges such as 5G trust model development. As a supporting element fo
13、r the alternative trust models recommendation stated above, it is suggested that both the FCC and the TAC regularly monitor future 5G-ENSURE progress for potential reuse for U.S.-focused 5G security recommendations. #9: It is recommended that 5G networks support new secure enrollment processes that
14、allow entities other than carriers to provision enrollment certificates to devices. This requirement does not apply for 3GPP direct network access defined in Clause 5. Flexibility will be key when it comes to provisioning. For example, homeowners may need a simple but secure means of linking their s
15、mart home devices together into one home network. Provisioning will also need to be very scalable and adaptable to different network configurations, due to large numbers of devices interconnecting and forming collaborative networks. Solutions will also need to facilitate and streamline transfer of o
16、wnership when devices are bought and sold in secondary markets. Flexible generation capabilities are also needed. Some IoT products will generate their own key material and initiate certificate signing requests. Other devices may be provisioned with centrally-generated key pairs and associated certi
17、ficates. The ability for the infrastructure to handle both models will be important. Some devices may also require multiple types of identities. Flexibility in supporting multiple types of identities when the use cases warrant such support could aid end users in securing their devices (e.g., optiona
18、l support for signature, encryption, key encipherment certificates). This is especially useful for some IoT protocols that allow multiple profiles to be used, all hosted on a single node. Support for ownership changeover is also important. Many consumer IoT devices will be integrated directly into a
19、 home or a vehicle. This means that the devices will change hands over time, e.g., when a home or vehicle is sold. The ability to bind and unbind the device to a new network and a new identity quickly and easily is important. The ability to bind and unbind a batch of certificates is also important,
20、e.g., a home being sold and the need to rekey all IoT devices in that home. Non-repudiation assurances of the cryptographic keys and the key provisioning designs are crucial for a variety of 5G-enabled IoT use cases. #10: It is recommended that 5G networks support robust methods for identifying and
21、responding to misbehavior. Depending on their deployment environment, IoT device theft and other compromises may be common. Flexible methods for reporting device compromise and quickly cutting off authentication abilities for devices must be provided. Some devices will simply require an image update
22、 to restore to a non-compromised state, which ATIS-1000077 10 means that the keys bound to a device would need to be revoked and then re-issued. The ability to efficiently perform this re-issuance online should also be explored for IoT devices that do not require higher levels of assurance. #11: It
23、is recommended that 5G networks support multiple devices that operate at multiple levels of sensitivity/assurance. Not all IoT products require the same levels of security assurance. Some IoT devices (e.g., connected vehicles, other Cyber Physical Systems) require stringent security controls and any
24、 keys or certificates issued to those devices must go through a robust identity vetting process. Other consumer devices may require less stringent identity vetting, and could even include self-service capabilities. Security models for identity provisioning should offer flexible options for the level
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ATIS100007720175GSECURITYREQUIREMENTSPDF
