ASTM D7863-2017 red 0000 Standard Guide for Evaluation of Convective Heat Transfer Coefficient of Liquids《评估液体对流传热系统的标准指南》.pdf
《ASTM D7863-2017 red 0000 Standard Guide for Evaluation of Convective Heat Transfer Coefficient of Liquids《评估液体对流传热系统的标准指南》.pdf》由会员分享,可在线阅读,更多相关《ASTM D7863-2017 red 0000 Standard Guide for Evaluation of Convective Heat Transfer Coefficient of Liquids《评估液体对流传热系统的标准指南》.pdf(8页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D7863 13D7863 17Standard Guide forEvaluation of Convective Heat Transfer Coefficient ofLiquids1This standard is issued under the fixed designation D7863; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last
2、 revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope Scope*1.1 This guide covers general information, without specific limits, for selecting methods for evaluating the heating an
3、d coolingperformance of liquids used to transfer heat where forced convection is the primary mode for heat transfer. Further, methods ofcomparison are presented to effectively and easily distinguish performance characteristics of the heat transfer fluids.1.2 The values stated in SI units are to be r
4、egarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety safety, health and healthen
5、vironmental practices and determine theapplicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardizationestablished in the Decision on Principles for the Development of International Standard
6、s, Guides and Recommendations issuedby the World Trade Organization Technical Barriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2D445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)D1298 Test Method for Density, R
7、elative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products byHydrometer MethodD2270 Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 C and 100 CD2717 Test Method for Thermal Conductivity of LiquidsD2766 Test Method for Specific Heat of Liquids and SolidsD
8、2879 Test Method for Vapor Pressure-Temperature Relationship and Initial Decomposition Temperature of Liquids byIsoteniscopeD2887 Test Method for Boiling Range Distribution of Petroleum Fractions by Gas ChromatographyD2879D4052 Test Method for Vapor Pressure-Temperature Relationship and Initial Deco
9、mposition Temperature Density,Relative Density, and API Gravity of Liquids by IsoteniscopeDigital Density MeterD4530 Test Method for Determination of Carbon Residue (Micro Method)D6743 Test Method for Thermal Stability of Organic Heat Transfer FluidsD7042 Test Method for Dynamic Viscosity and Densit
10、y of Liquids by Stabinger Viscometer (and the Calculation of KinematicViscosity)E659 Test Method for Autoignition Temperature of Chemicals3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 heat transfer fluid, na fluid which remains essentially a liquid while transferring heat to
11、 or from an apparatus or process,although this guide does not preclude the evaluation of a heat transfer fluid that may be used in its vapor state.1 This guide is under the jurisdiction of ASTM Committee D02 on Petroleum Products Products, Liquid Fuels, and Lubricants and is the direct responsibilit
12、y ofSubcommittee D02.L0.06 on Non-Lubricating Process Fluids.Current edition approved May 1, 2013Aug. 1, 2017. Published July 2013August 2017. Originally approved in 2013. Last previous edition approved in 2013 as D7863 13.DOI: 10.1520/D7863-13.10.1520/D7863-17.2 For referencedASTM standards, visit
13、theASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard
14、an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is
15、to be considered the official document.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.1.1.1 DiscussionHeat transfer fluids may be hydrocarbon or petroleum based such
16、as polyglycols, esters, hydrogenated terphenyls, alkylatedaromatics, diphenyl-oxide/biphenyl blends, and mixtures of di- and triaryl-ethers. Small percentages of functional componentssuch as antioxidants, anti-wear and anti-corrosion agents, TBN, acid scavengers, or dispersants, or a combination the
17、reof, can bepresent.3.1.2 heat transfer coeffcient, na term, h, used to relate the amount of heat transfer per unit area at a given temperaturedifference between two media and for purposes of this guide, the temperature difference is between a flow media and itssurrounding conduit.3.1.2.1 Discussion
18、The heat transfer coefficient for conditions applicable to fluids flowing in circular conduits under turbulent flow is referred to asthe convective heat transfer coefficient.4. Summary of Guide4.1 The convective heat transfer coefficient for flow in a circular conduit depends in a complicated way on
19、 many variablesincluding fluid properties (thermal conductivity, k, fluid viscosity, , fluid density, , specific heat capacity, cp), system geometry,the flow velocity, the value of the characteristic temperature difference between the wall and bulk fluid, and surface temperaturedistribution. It is b
20、ecause of this complicated interaction of variables, test results can be biased because of the inherentcharacteristics of the heat transfer apparatus, measurement methods, and the working definition for the heat transfer coefficient.Direct measurement of the convective heat flow in circular conduits
21、 is emphasized in this guide.4.2 This guide provides information for assembling a heat transfer apparatus and stresses the importance of providing reportinginformation regarding the use and operation of the apparatus.5. Significance and Use5.1 The reported values of convective heat transfer coeffici
22、ents are somewhat dependent upon measurement technique and it istherefore the purpose of this guide to focus on methods to provide accurate measures of heat transfer and precise methods ofreporting. The benefit of developing such a guide is to provide a well understood well-understood basis by which
23、 heat transferperformance of fluids may be accurately compared and reported.5.2 For comparison of heat transfer performance of heat transfer fluids, measurement methods and test apparatus should beidentical, but in reality heat transfer rigs show differences from rig to rig. Therefore, methods discu
24、ssed in the guide are generallyrestricted to the use of heated tubes that have wall temperatures higher than the bulk fluid temperature and with turbulent flowconditions.5.3 Similar test methods are found in the technical literature, however it is generally left to the user to report results in a fo
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD78632017RED0000STANDARDGUIDEFOREVALUATIONOFCONVECTIVEHEATTRANSFERCOEFFICIENTOFLIQUIDS 评估 液体 对流 传热

链接地址:http://www.mydoc123.com/p-526445.html