ASTM D6277-2007(2017) 1875 Standard Test Method for Determination of Benzene in Spark-Ignition Engine Fuels Using Mid Infrared Spectroscopy《使用中红外光谱仪测定火花点火发动机燃料中苯的标准试验方法》.pdf
《ASTM D6277-2007(2017) 1875 Standard Test Method for Determination of Benzene in Spark-Ignition Engine Fuels Using Mid Infrared Spectroscopy《使用中红外光谱仪测定火花点火发动机燃料中苯的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D6277-2007(2017) 1875 Standard Test Method for Determination of Benzene in Spark-Ignition Engine Fuels Using Mid Infrared Spectroscopy《使用中红外光谱仪测定火花点火发动机燃料中苯的标准试验方法》.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D6277 07 (Reapproved 2017)Standard Test Method forDetermination of Benzene in Spark-Ignition Engine FuelsUsing Mid Infrared Spectroscopy1This standard is issued under the fixed designation D6277; the number immediately following the designation indicates the year oforiginal adoption or,
2、 in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the per-centage of benzene in spark
3、-ignition engine fuels. It is appli-cable to concentrations from 0.1 to 5 volume %.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated w
4、ith its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accor-dance with internationally recognized
5、 principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2D1298 Test Method for Dens
6、ity, Relative Density, or APIGravity of Crude Petroleum and Liquid Petroleum Prod-ucts by Hydrometer MethodD4052 Test Method for Density, Relative Density, and APIGravity of Liquids by Digital Density MeterD4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4177 Practice for Automa
7、tic Sampling of Petroleum andPetroleum ProductsD4307 Practice for Preparation of Liquid Blends for Use asAnalytical StandardsD5769 Test Method for Determination of Benzene, Toluene,and Total Aromatics in Finished Gasolines by GasChromatography/Mass SpectrometryD5842 Practice for Sampling and Handlin
8、g of Fuels forVolatility MeasurementD5854 Practice for Mixing and Handling of Liquid Samplesof Petroleum and Petroleum ProductsE168 Practices for General Techniques of Infrared Quanti-tative AnalysisE1655 Practices for Infrared Multivariate QuantitativeAnalysisE2056 Practice for Qualifying Spectrome
9、ters and Spectro-photometers for Use in Multivariate Analyses, CalibratedUsing Surrogate Mixtures3. Terminology3.1 Definitions:3.1.1 multivariate calibrationa process for creating acalibration model in which multivariate mathematics is appliedto correlate the absorbances measured for a set of calibr
10、ationsamples to reference component concentrations or propertyvalues for the set of samples.3.1.1.1 DiscussionThe resultant multivariate calibrationmodel is applied to the analysis of spectra of unknown samplesto provide an estimate of the component concentration orproperty values for the unknown sa
11、mple.3.1.1.2 DiscussionIncluded in the multivariate calibrationalgorithms are Partial Least Squares, Multilinear Regression,and Classical Least Squares Peak Fitting.3.1.2 oxygenatean oxygen-containing organic compoundwhich may be used as a fuel or fuel supplement, for example,various alcohols and et
12、hers.4. Summary of Test Method4.1 Asample of spark-ignition engine fuel is introduced intoa liquid sample cell.Abeam of infrared light is imaged throughthe sample onto a detector, and the detector response isdetermined. Wavelengths of the spectrum, that correlate highlywith benzene or interferences,
13、 are selected for analysis usingselective bandpass filters or by mathematically selecting areasof the whole spectrum. A multivariate mathematical analysisconverts the detector response for the selected areas of thespectrum of an unknown to a concentration of benzene.1This test method is under the ju
14、risdiction of ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility ofSubcommittee D02.04.0F on Absorption Spectroscopic Methods.Current edition approved Oct. 1, 2017. Published November 2017. Originallyapproved in 1998. Last previous edition approved
15、 in 2012 as D627707 (2012).DOI: 10.1520/D6277-07R17.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright
16、 ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International
17、Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.15. Significance and Use5.1 Benzene is a compound that endangers health, and theconcentration is limited by environmental protection agenciesto produce a less toxic gasoline.5.2 T
18、his test method is fast, simple to run, and inexpensive.5.3 This test method is applicable for quality control in theproduction and distribution of spark-ignition engine fuels.6. Interferences6.1 The primary spectral interferences are toluene and othermonosubstituted aromatics. In addition, oxygenat
19、es can inter-fere with measurements made with filter apparatus. Properchoice of the apparatus, proper design of a calibration matrix,and proper utilization of multivariate calibration techniquescan minimize these interferences.7. Apparatus7.1 Mid-IR Spectrometric Analyzer (of one of the followingtyp
20、es):7.1.1 Filter-based Mid-IR Test ApparatusThe type ofapparatus suitable for use in this test method minimallyemployes an IR source, an infrared transmission cell or a liquidattenuated total internal reflection cell, wavelength discrimi-nating filters, a chopper wheel, a detector, an A-D converter,
21、 amicroprocessor, and a method to introduce the sample. Thefrequencies and bandwidths of the filters are specified in Table1.7.1.2 Fourier Transform Mid-IR SpectrometerThe type ofapparatus suitable for use in this test method employs an IRsource, an infrared transmission cell or a liquid attenuated
22、totalinternal reflection cell, a scanning interferometer, a detector, anA-D converter, a microprocessor, and a method to introducethe sample. The following performance specifications (throughthe ATR cell) must be met:scan range 4000 cm1to 600 cm1resolution 4 cm1S/N at 674 cm1300:1 RMSThe signal to n
23、oise level will be established by taking asingle beam spectrum using air or nitrogen as the reference anddeclaring that spectrum as the background. The backgroundsingle beam spectrum obtained can be the average of multipleFTIR scans, but the total collection time shall not exceed 60 s.If interferenc
24、e from water vapor or carbon dioxide is aproblem, the instrument shall be purged with dry air ornitrogen. A subsequent single beam spectrum shall be takenunder the same conditions and ratioed to the backgroundspectrum. The RMS noise of the ratioed spectra, the 100 %line, shall not exceed 0.3 % trans
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD6277200720171875STANDARDTESTMETHODFORDETERMINATIONOFBENZENEINSPARKIGNITIONENGINEFUELSUSINGMIDINFRAREDSPECTROSCOPY

链接地址:http://www.mydoc123.com/p-522038.html