ASTM D5514-2006(2011) Standard Test Method for Large Scale Hydrostatic Puncture Testing of Geosynthetics《土工合成织物的大规模静水压冲孔试验的标准试验方法》.pdf
《ASTM D5514-2006(2011) Standard Test Method for Large Scale Hydrostatic Puncture Testing of Geosynthetics《土工合成织物的大规模静水压冲孔试验的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D5514-2006(2011) Standard Test Method for Large Scale Hydrostatic Puncture Testing of Geosynthetics《土工合成织物的大规模静水压冲孔试验的标准试验方法》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D5514 06 (Reapproved 2011)Standard Test Method forLarge Scale Hydrostatic Puncture Testing of Geosynthetics1This standard is issued under the fixed designation D5514; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the
2、 year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method evaluates the stress/time properties ofgeosynthetics by using hydrostatic pressure to compre
3、ss thegeosynthetic over synthetic or natural test bases consisting ofmanufactured test pyramids/cones, rocks, soil or voids.1.2 This test method allows the user to determine therelative failure mode, points of failure for geosynthetics, orboth.1.3 This test method offers two distinct procedures.1.3.
4、1 Procedure A incorporates manufactured test pyramidsor cones as the base of the testing apparatus. Procedure A isintended to create comparable data between laboratories, andcan be used as a guide for routine acceptance test for variousmaterials.1.3.2 Procedures B and C incorporate site specific soi
5、l orother material selected by the user as the test base of the testingapparatus. Procedures B and C are methods for geosyntheticdesign for a specific site.1.4 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are provided forinformation only.1.5 This s
6、tandard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.
7、1 ASTM Standards:2D792 Test Methods for Density and Specific Gravity (Rela-tive Density) of Plastics by DisplacementD1505 Test Method for Density of Plastics by the Density-Gradient TechniqueD4439 Terminology for GeosyntheticsD5199 Test Method for Measuring the Nominal Thicknessof GeosyntheticsD5261
8、 Test Method for Measuring Mass per Unit Area ofGeotextilesD5994 Test Method for Measuring Core Thickness ofTextured GeomembranesE11 Specification for Woven Wire Test Sieve Cloth and TestSieves3. Terminology3.1 Definitions:3.1.1 atmosphere for testing geomembranes, nair main-tained at a relative hum
9、idity of 50 to 70 % and a temperatureof 21 6 2C (70 6 4F).3.1.2 critical height (ch), nthe maximum exposed heightof a cone or pyramid that will not cause a puncture failure ofa geosynthetic at a specified hydrostatic pressure for a givenperiod of time.3.1.3 failure, nin testing geosynthetics, water
10、or air pres-sure in the test vessel at failure of the geosynthetic.3.1.4 hydrostatic pressure, na state of stress in which allthe principal stresses are equal (and there is no shear stress), asin a liquid at rest; induced artificially by means of a gagedpressure system; the product of the unit weigh
11、t of the liquidand the difference in elevation between the given point and thefree water elevation.3.2 For definitions of other terms used in this test method,refer to Terminology D4439.4. Significance and Use4.1 Procedure AThis procedure is an index type testwhich can be used as a guide for accepta
12、nce of commercialshipments of geosynthetics. The standard cone and pyramidtest fixtures can establish critical height (ch) consistency withsimilar material from previous lots or different suppliers, aswell as testing from other laboratories. However, due to thetime required to perform tests, it is g
13、enerally not recommendedfor routine acceptance testing.4.2 Procedures B and CThese procedures are perfor-mance tests intended as a design aid used to simulate the in-situbehavior of geosynthetics under hydrostatic compression.These test methods may assist a design engineer in comparingthe ability of
14、 several candidate geosynthetic materials toconform to a site specific subgrade under specified use and1This test method is under the jurisdiction of ASTM Committee D35 onGeosynthetics and is the direct responsibility of Subcommittee D35.10 on Geomem-branes.Current edition approved June 1, 2011. Pub
15、lished July 2011. Originally approvedin 1994. Last previous edition approved in 2006 as D5514 06. DOI: 10.1520/D5514-06R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, re
16、fer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.conditions. In procedure B, the pressure is increased until afailure is observed. In procedure C, a given set of conditions
17、(pressure, temperature and test duration) are maintained con-stant and the performance of the system is observed at the endof the test.5. Apparatus5.1 For safe operation, the test vessel should have anappropriate ASME pressure rating. The maximum pressurerating of the vessel is dependent on the mate
18、rial being testedand expected pressures to be encountered. Pressure can beachieved from a regulated air system or a hydraulic pump.5.2 Subgrade Pan, several removable pans for configuringvarious subgrades. Subgrade pans are to be built, with a depthof 102 mm (4 in.), and with drain holes in the bott
19、om of the panto allow the pressurizing medium to flow through. The sub-grade pan shall be constructed of a suitable material to supporta load of 1800 kPa (250 psi).5.3 Leak Detection System, can be designed by usingdisplacement floats, moisture sensor, pressure sensors, a sightglass, or other means
20、that will accurately detect failure.5.4 Layout Grid, for procedure B, the layout grid is to assistin determining deformation of the tested geosynthetic. The gridis placed flat against the test specimen that has been placedready for testing. Depth readings will be taken in a prearrangedpattern over t
21、he entire area of the test specimen. The prear-ranged area that the geosynthetic displacement depth ischecked must remain consistent throughout the completetesting. The depth is taken from the top of the grid to thesurface of the test specimen. The layout grid is to be made of3 mm (0.12 in.) aluminu
22、m rod with a grid layout of 50 by 50mm (2 by 2 in.).5.5 Test Pyramids, the pyramid should be manufacturedfrom aluminum or a hard plastic, that is, epoxy or Lexan.5.6 Test Cones, cones are more consistent when manufac-tured out of a hard plastic, that is, epoxy.5.7 Temperature Probe, used to measure
23、the test chambertemperature as well as the liquid temperature (if applicable).The accuracy of the temperature probe shall be 61C.5.8 Support Bridge, used to support the center of thesubgrade pan to keep the pan from deflecting under load.5.9 Pressure Measurement Gages, should be in a series suchthat
24、 each lower pressure can be closed off as its maximum safeoperation pressure is reached. The series of gages should be 0to 210 kPa (0 to 30 psi), 0 to 690 kPa (0 to 100 psi), and 0 to1400 kPa (0 to 200 psi). The accuracy shall be 67.0 kPa (1psi).6. Hazards6.1 PrecautionIn addition to other precautio
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD551420062011STANDARDTESTMETHODFORLARGESCALEHYDROSTATICPUNCTURETESTINGOFGEOSYNTHETICS 土工 合成 织物 大规模

链接地址:http://www.mydoc123.com/p-520002.html