API MPMS 11.2.2M-1986 Manual of Petroleum Measurement Standards Chapter 11.2.2M-Compressibility Factors for Hydrocarbons 350 C637 Kilograms per Cubic Metre Density (15 and C46 to 6.pdf
《API MPMS 11.2.2M-1986 Manual of Petroleum Measurement Standards Chapter 11.2.2M-Compressibility Factors for Hydrocarbons 350 C637 Kilograms per Cubic Metre Density (15 and C46 to 6.pdf》由会员分享,可在线阅读,更多相关《API MPMS 11.2.2M-1986 Manual of Petroleum Measurement Standards Chapter 11.2.2M-Compressibility Factors for Hydrocarbons 350 C637 Kilograms per Cubic Metre Density (15 and C46 to 6.pdf(270页珍藏版)》请在麦多课文档分享上搜索。
1、Manual of PetroleumMeasurement StandardsChapter 11.2.2MCompressibility Factors for Hydrocarbons: 350637 Kilograms per Cubic Metre Density (15C) and 46C to 60C Metering TemperatureGPA 8286-86 (M)FIRST EDITION, OCTOBER 1986REAFFIRMED, DECEMBER 2012Manual of PetroleumMeasurement StandardsChapter 11.2.2
2、MCompressibility Factors for Hydrocarbons: 350637 Kilograms per Cubic Metre Density (15C) and 46C to 60C Metering TemperatureMeasurement CoordinationGPA 8286-86 (M)FIRST EDITION, OCTOBER 1986REAFFIRMED, DECEMBER 2012FOREWORD This publication provides tables to correct hydrocarbon volumes metered und
3、er pressure to corresponding volumes at the equilibrium pressure for the metered temperature. The parallel publication in customary units is the Manual of Petroleum Measurement Stan- dards, Chapter 11.2.2. The table presented in this volume is also available from API as a computer tape, along with a
4、 manual containing the text information in this publication. Suggested revisions are invited and should be submitted to the director, Measurement Coordination Department, American Petroleum Institute, 1220 L Street. N. W., Wash- ington, D.C. 20005. COMMITTEE ON STATIC PETROLEUM MEASUREMENT WORKING G
5、ROUP ON COMPRESSIBILITY F. P. Gielzecki (Retired) Imperial Oil, Ltd. K. M. Goin, Ph.D. Cities Service Oil and Gas Corporation K. T. Liu, Ph.D. Chevron Oil Field Research Company M. A. Plumer, Ph.D. Marathon Oil Company R. A. Griffith (Chairman, Retired) Texaco Trading and Transportation Company J. P
6、olowek Interprovincial Pipe Line Ltd. R. B. Hall Texas Eastern Transmission Company J. A. Hamshar Cities Service Oil and Gas Corporation G. W. Singletary (Deceased) Texas Eastern Transmission Company G. W. Swinney (Retired) Phillips Petroleum Company 1800 e iv CONTENTS CHAPTER 11.2.2M-COMPRESSIBILIT
7、Y FACTORS FOR HYDRO- CARBONS: 350-637 KILOGRAMS PER CUBIC METRE DENSITY (15C) AND . 46C TO 60C METERING TEMPERATURE 11.2.2.1M 11.2.2.2M 11.2.2.3M 11.2.2.4M 11.2.2.5M 11.2.2.6M 11.2.2.7M 11.2.2.8M 11.2.2.9M PAGE Scope 1 History and Development 1 Type of Standard and Limits . 1 Example Use of the Stan
8、dard 1 Data Base 2 Basic Model . 5 Uncertainty Analysis . 6 Calculation Procedure 8 References . 12 Table of Compressibility Factors for Hydrocarbons: 350-637 Kilograms per Cubic Metre Density (15C) and -46C to 60C Metering Temperature Text Tables 13 1-Summary of Data Base . 2 2-Data Mixture Composi
9、tions (Mole Percent) . 3-Effect of Pressure on Compressibility Factors . 4-Expected Frequency of Errors When Using Temperatures to the 4 6 Nearest 0.25“C Versus the Nearest 0.5“F . 6 Figures 1-Limits of Data Base by Relative Density and Temperature . 2-Uncertainties (95-Percent Confidence Level) in
10、Volume Versus 3 Temperature and Relative Density 7 Chapter 1 1 -Physical Properties Data SECTION 2-VOLUME CORRECTION FACTORS FOR METER PROVING AND HYDROCARBON COMPRESSIBILITY 11.2.2M Compressibility Factors for Hydrocarbons: 350-637 Kilograms per Cubic Metre Density (15C) and -46C to 60C Metering Te
11、mperature 11.2.2.1 M SCOPE The purpose of this standard is to correct hydrocarbon volumes metered under pressure to the corresponding vol- umes at the equilibrium pressure for the metered tempera- ture. This standard contains compressibility factors related to the meter temperature and density at 15
12、C of the metered material. The corresponding customary version is Chapter 11.2.2. 11.2.2.2M HISTORY AND DEVELOPMENT The previous API standard for hydrocarbon compressi- bility, Standard 1101, Measurement of Petroleum Liquid Hydrocarbons by Positive Displacement Meter, was devel- oped from graphical
13、correlations prepared in 1945. This standard was based on limited data with only a few points for pure fluids in the range from propane to pentane. No lighter mixtures and no effect of pressure on the compress- ibility factor were considered. In addition, no metric (SI) version was available. In 198
14、 1, the Committee on Static Petroleum Measurement formed a subcommittee, the Hydrocarbon Compressibility Group, to revise the compressibility tables of Standard 1101. As a result of an extensive literature survey, the data base found for the relative density portion of the table covers a broader ran
15、ge than that used in Standard 1101 but is lacking in data for unsaturated hydrocarbons. The data base was used to develop a mathematical model that includes the effect of pressure on the compressibility factor. The printed table produced from the model is the standard. This standard replaces the dis
16、continued Standard 1101 and the first edition of Chapter 11.2.2, Compressibility Factors for Hydrocar- bons: 0.500-0.61 1 Relative Density Range and 20-128F. 11.2.2.3M TYPE OF STANDARD AND LIMITS The actual standard is the printed table of 25 1 pages that follows this text. The increments used in th
17、e table are 0.25“C and 2 kilograms per cubic metre. Interpolation to 1 kilogram per cubic metre in density is allowed. Compressibilities are in the usual units of reciprocal kilopascals but are calculated from two terms, A and B, and the pressure difference from 1 equilibrium, D,. This is necessary
18、to obtain the desired accuracy in volume because of the important effect of pres- sure on the compressibility factor for light hydrocarbons. The range of the table is from -46C to 60C and from 350 to 637 kilograms per cubic metre density (15“C), for use with pressure differences above equilibrium fr
19、om O to 15,200 kilopascals . The equation used to generate the table is given for those who wish to duplicate the table using their specific computer and language. Identical table information is available on a computer tape. The use of this computer tape to verify individually developed computer sub
20、routines is highly rec- ommended. 11.2.2.4M EXAMPLE USE OF THE STANDARD In this standard, the compressibility factor (F) is used in the normal manner for volume correction (* denotes mul- tiplication): C,I = V,/V, = i/(i - F * D,) Where: Cp1 = correction factor for pressure. Ve = volume at the equil
21、ibrium (bubble point) V, = volume at the meter pressure, P,. pressure, P,. D, = P, - P,. P, and P, may be in either kilopascals gage or kilopascals absolute, but both must be in the same units. As an example, calculate the volume at equilibrium pres- sure of 1000 cubic metres (V,) of a material with
22、 a density (15C) of 530.4 kilograms per cubic metre metered under a pressure of 5000 kilopascals at a temperature of 5.1“C. The equilibrium pressure (I,) for this material at 5.1“C is 450 kilopascals. The rounded density and temperature val- ues of 530 kilograms per cubic metre and 5.0“C yield an A
23、factor of 281,093 and a B factor of 5.504. The compress- ibfiity factor (F) is calculated as follows: F = I/(A + D, * B) = 1/281,093 + (5000 - 450) * 5.5041 = 0.000003267 The value for F is rounded to the ninth decimal place, to the maximum of four significant digits. 2 CHAPTER 1 1 -PHYSICAL PROPERT
24、IES DATA Then, C, = 1/1.0 - 0.000003267 * (5000 - 450) = 1.0151 The value for C, is rounded to the maximum of four decimal places. ve = v, * c, = 1000 * 1.0151 = 1015.1 cubic metres The value for Ve is rounded to the nearest O. 1 cubic metre. 11.2.2.5M DATA BASE An initial 2278 data points were obta
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- APIMPMS1122M1986MANUALOFPETROLEUMMEASUREMENTSTANDARDSCHAPTER1122MCOMPRESSIBILITYFACTORSFORHYDROCARBONS350C637KILOGRAMSPERCUBICMETREDENSITY15ANDC46TO6PDF

链接地址:http://www.mydoc123.com/p-399492.html