Support Vector Machines and Kernels.ppt
《Support Vector Machines and Kernels.ppt》由会员分享,可在线阅读,更多相关《Support Vector Machines and Kernels.ppt(43页珍藏版)》请在麦多课文档分享上搜索。
1、Support Vector Machines and Kernels,Adapted from slides by Tim Oates Cognition, Robotics, and Learning (CORAL) Lab University of Maryland Baltimore County,Doing Really Well with Linear Decision Surfaces,Outline,Prediction Why might predictions be wrong? Support vector machines Doing really well with
2、 linear models Kernels Making the non-linear linear,Supervised ML = Prediction,Given training instances (x,y) Learn a model f Such that f(x) = y Use f to predict y for new x Many variations on this basic theme,Why might predictions be wrong?,True Non-Determinism Flip a biased coin p(heads) = Estimat
3、e If 0.5 predict heads, else tails Lots of ML research on problems like this Learn a model Do the best you can in expectation,Why might predictions be wrong?,Partial Observability Something needed to predict y is missing from observation x N-bit parity problem x contains N-1 bits (hard PO) x contain
4、s N bits but learner ignores some of them (soft PO),Why might predictions be wrong?,True non-determinism Partial observability hard, soft Representational bias Algorithmic bias Bounded resources,Representational Bias,Having the right features (x) is crucial,X,O,O,O,O,X,X,X,X,O,O,O,O,X,X,X,Support Ve
5、ctor Machines,Doing Really Well with Linear Decision Surfaces,Strengths of SVMs,Good generalization in theory Good generalization in practice Work well with few training instances Find globally best model Efficient algorithms Amenable to the kernel trick,Linear Separators,Training instances x n y -1
6、, 1 w n b Hyperplane+ b = 0 w1x1 + w2x2 + wnxn + b = 0 Decision function f(x) = sign( + b),Math Review Inner (dot) product:= a b = ai*bi = a1b1 + a2b2 + +anbn,Intuitions,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Intuitions,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Intuitions,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Intuitions,X
7、,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,A “Good” Separator,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Noise in the Observations,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Ruling Out Some Separators,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Lots of Noise,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Maximizing the Margin,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,“
8、Fat” Separators,X,X,O,O,O,O,O,O,X,X,X,X,X,X,O,O,Why Maximize Margin?,Increasing margin reduces capacity Must restrict capacity to generalize m training instances 2m ways to label them What if function class that can separate them all? Shatters the training instances VC Dimension is largest m such th
9、at function class can shatter some set of m points,VC Dimension Example,X,X,X,O,X,X,X,O,X,X,X,O,O,O,X,O,X,O,X,O,O,O,O,O,Bounding Generalization Error,Rf = risk, test error Rempf = empirical risk, train error h = VC dimension m = number of training instances = probability that bound does not hold,Rf
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SUPPORTVECTORMACHINESANDKERNELSPPT
