基于组合模型的网络流量预测.ppt
《基于组合模型的网络流量预测.ppt》由会员分享,可在线阅读,更多相关《基于组合模型的网络流量预测.ppt(23页珍藏版)》请在麦多课文档分享上搜索。
1、,基于组合模型的网络流量预测,兰州大学-张洋,CONTENTS,1,4,2,5,3,研究背景,实验结果及分析,研究方法,结论与建议,模型设计,RESEARCH BACKGROUNDS,RESEARCH FR METHODS,model design,experiment results and analysis,CONCLUSION AND SUGGESTION,PPT模板下载: 行业PPT模板: 节日PPT模板: PPT素材下载: PPT背景图片: PPT图表下载: 优秀PPT下载: PPT教程: Word教程: Excel教程: 资料下载: PPT课件下载: 范文下载: 试卷下载: 教
2、案下载: PPT论坛:,1,研究背景,RESEARCH BACKGROUNDS,Internet的普及率越来越广,网民数量呈爆炸式的增长,这对计算机网络的安全及管理提出巨大挑战网络流量分析是对网络进行管理最为广泛和重要的手段之一 有效的网络流量预测可以对网络管理提供依据,研究现状,1,研究背景,RESEARCH BACKGROUNDS,Poisson模型,线性模型,非线性模型,组合 模型,流量数据服从指数分布,网络具有尺度特性,Poisson不再合适。,随机性、突发性等非线性特点。,网络流量数据拥有组合特性和复杂性,BP,RBF,SVM,ARMA,通过分析时间序列历史数据发掘研究事物变化的规律
3、性,2,研究方法,RESEARCH METHODS,ARMA模型,由自回归模型与滑动平均模型为基础“混合”构成。,如果时间序列yt满足:,则称时间序列为yt服从(p,q)阶自回归滑动平均混合模型。 或者记为(B)yt = (B)t 特殊情况:q=0,模型即为AR(p),p=0,模型即为MA(q)。,2,研究方法,极限学习机,第一步:确定隐含层神经元个数,随机设定输入层与隐含层间的连接权值w和隐含层神经元的阈值b;第二步:选择一个可以无限可微的函数作为隐含层神经元的激活函数,进而计算隐含层输出矩阵H;第三步:计算输出层权值,是一种特殊类型的单隐层前馈神经网络,仅有一个隐结点层。,极限学习机的结构
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 组合 模型 网络流量 预测 PPT
