第4章 基于遗传算法的随机优化搜索.ppt
《第4章 基于遗传算法的随机优化搜索.ppt》由会员分享,可在线阅读,更多相关《第4章 基于遗传算法的随机优化搜索.ppt(45页珍藏版)》请在麦多课文档分享上搜索。
1、第4章 基于遗传算法的随机优化搜索,4.1 基本概念 4.2 基本遗传算法 4.3 遗传算法应用举例 4.4 遗传算法的特点与优势,4.1 基本概念 1. 个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼,一个个体也就是搜索空间中的一个点。 种群(population)就是模拟生物种群而由若干个体组成的群体, 它一般是整个搜索空间的一个很小的子集。,2. 适应度与适应度函数 适应度(fitness)就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数(fitness function)就是问题中的 全体个体与其适应度之间
2、的一个对应关系。它一般是一个实值函数。该函数就是遗传算法中指导搜索的评价函数。,3. 染色体与基因染色体(chromosome)就是问题中个体的某种字符串形式的编码表示。字符串中的字符也就称为基因(gene)。例如:个体 染色体9 - 1001(2,5,6)- 010 101 110,4. 遗传操作亦称遗传算子(genetic operator),就是关于染色体的运算。遗传算法中有三种遗传操作: 选择-复制(selection-reproduction) 交叉(crossover,亦称交换、交配或杂交) 变异(mutation,亦称突变),选择-复制 通常做法是:对于一个规模为N的种群S,按每
3、个染色体xiS的选择概率P(xi)所决定的选中机会, 分N次从S中随机选定N个染色体, 并进行复制。,交叉 就是互换两个染色体某些位上的基因。,s1=01000101, s2=10011011 可以看做是原染色体s1和s2的子代染色体。,例如, 设染色体 s1=01001011, s2=10010101, 交换其后4位基因, 即,变异 就是改变染色体某个(些)位上的基因。例如, 设染色体 s=11001101 将其第三位上的0变为1, 即s=11001101 11101101= s。s也可以看做是原染色体s的子代染色体。,4.2 基本遗传算法,算法中的一些控制参数: 种群规模 最大换代数 交叉
4、率(crossover rate)就是参加交叉运算的染色体个数占全体染色体总数的比例,记为Pc,取值范围一般为0.40.99。 变异率(mutation rate)是指发生变异的基因位数所占全体染色体的基因总位数的比例,记为Pm,取值范围一般为0.00010.1。,基本遗传算法步1 在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;步2 随机产生U中的N个个体s1, s2, , sN,组成初始种群S=s1, s2, , sN,置代数计数器t=1;步3 计算S中每个个体的适应度f() ;步4 若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
5、,步5 按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;步6 按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;,步7 按变异率Pm所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;步8 将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3;,4.3 遗传算法应用举例,例4.1 利用遗传算法求解区间0,31上的二次函数y=x2的最大值。,分析 原问题可转化为在
6、区间0, 31中搜索能使y取最大值的点a的问题。那么,0, 31 中的点x就是个体, 函数值f(x)恰好就可以作为x的适应度,区间0, 31就是一个(解)空间 。这样, 只要能给出个体x的适当染色体编码, 该问题就可以用遗传算法来解决。,解(1) 设定种群规模,编码染色体,产生初始种群。将种群规模设定为4;用5位二进制数编码染色体;取下列个体组成初始种群S1:s1= 13 (01101), s2= 24 (11000)s3= 8 (01000), s4= 19 (10011) (2) 定义适应度函数,取适应度函数:f (x)=x2,(3) 计算各代种群中的各个体的适应度, 并对其染色体进行遗传
7、操作,直到适应度最高的个体(即31(11111))出现为止。 ,首先计算种群S1中各个体s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011) 的适应度f (si) 。容易求得f (s1) = f(13) = 132 = 169f (s2) = f(24) = 242 = 576f (s3) = f(8) = 82 = 64f (s4) = f(19) = 192 = 361,再计算种群S1中各个体的选择概率。,选择概率的计算公式为,由此可求得P(s1) = P(13) = 0.14P(s2) = P(24) = 0.49 P(s3)
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 遗传 算法 随机 优化 搜索 PPT
