AudioDB- Scalable approximate nearest-neighbor search with .ppt
《AudioDB- Scalable approximate nearest-neighbor search with .ppt》由会员分享,可在线阅读,更多相关《AudioDB- Scalable approximate nearest-neighbor search with .ppt(30页珍藏版)》请在麦多课文档分享上搜索。
1、Thursday, November 13, 2008,ASA 156: Statistical Approaches for Analysis of Music and Speech Audio Signals,AudioDB: Scalable approximate nearest-neighbor search with automatic radius-bounded indexing,Michael A. Casey Digital Musics Dartmouth College, Hanover, NH,Scalable Similarity,8M tracks in comm
2、ercial collection PByte of multimedia data Require passage-level retrieval ( 2 bars) Require scalable nearest-neighbor methods,Specificity,Partial track retrieval Alternate versions: remix, cover, live, album Task is mid-high specificity,Example: remixing,Original Track Remix 1 Remix 2 Remix 3,Audio
3、 Shingles, concatenate l frames of m dimensional features,A shingle is defined as:,Shingles provide contextual information about features Originally used for Internet search engines: Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, Geoffrey Zweig: “Syntactic Clustering of the Web”. Computer Ne
4、tworks 29(8-13): 1157-1166 (1997) Related to N-grams, overlapping sequences of featuresApplied to audio domain by Casey and Slaney : Casey, M. Slaney, M. “The Importance of Sequences in Musical Similarity”, in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006,Audio
5、Shingle Similarity,Audio Shingle Similarity, a query shingle drawn from a query track Q, database of audio tracks indexed by (n), a database shingle from track n,Shingles are normalized to unit vectors, therefore:,For shingles with M dimensions (M=l.m); m=12, 20; l=30,40,Open source: google: “audioD
6、B” Management of tracks, sequences, salience Automatic indexing parameters OMRAS2, Yahoo!, AWAL, CHARM, more Web-services interface (SOAP / JSON) Implementation of LSH for large N 1B 1-10 ms whole-track retrieval from 1B vectors,AudioDB: Shingle Nearest Neighbor Search,AudioDB: Shingle Nearest Neigh
7、bor Search,Whole-track similarity,Often want to know which tracks are similar Similarity depends on specificity of task Distortion / filtering / re-encoding (high) Remix with new audio material (mid) Cover song: same song, different artist (mid),Whole-track resemblance: radius-bounded search,Compute
8、 the number of shingle collisions between two tracks:,Whole-track resemblance: radius-bounded search,Compute the number of shingle collisions between two tracks:,Requires a threshold for considering shingles to be relatedNeed a way to estimate relatedness (threshold) for data set,Statistical approac
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AUDIODBSCALABLEAPPROXIMATENEARESTNEIGHBORSEARCHWITHPPT

链接地址:http://www.mydoc123.com/p-378713.html