Equalization in a wideband TDMA system.ppt
《Equalization in a wideband TDMA system.ppt》由会员分享,可在线阅读,更多相关《Equalization in a wideband TDMA system.ppt(29页珍藏版)》请在麦多课文档分享上搜索。
1、Equalization in a wideband TDMA system,Three basic equalization methodsLinear equalization (LE)Decision feedback equalization (DFE)Sequence estimation (MLSE-VA)Example of channel estimation circuit,Three basic equalization methods (1),Linear equalization (LE):,Performance is not very good when the f
2、requency response of the frequency selective channel contains deep fades.,Zero-forcing algorithm aims to eliminate the intersymbol interference (ISI) at decision time instants (i.e. at the center of the bit/symbol interval). Least-mean-square (LMS) algorithm will be investigated in greater detail in
3、 this presentation. Recursive least-squares (RLS) algorithm offers faster convergence, but is computationally more complex than LMS (since matrix inversion is required).,Three basic equalization methods (2),Decision feedback equalization (DFE):,Performance better than LE, due to ISI cancellation of
4、tails of previously received symbols.,Decision feedback equalizer structure:,Feed-forward filter (FFF),Feed-back filter (FBF),Adjustment of filter coefficients,Input,Output,+,+,Symbol decision,Three basic equalization methods (3),Maximum Likelihood Sequence Estimation using the Viterbi Algorithm (ML
5、SE-VA):,Best performance. Operation of the Viterbi algorithm can be visualized by means of a trellis diagram with m K-1 states, where m is the symbol alphabet size and K is the length of the overall channel impulse response (in samples).,State trellis diagram,Sample time instants,State,Allowed trans
6、ition between states,Linear equalization, zero-forcing algorithm,Raised cosine spectrum,Transmitted symbol spectrum,Channel frequency response (incl. T & R filters),Equalizer frequency response,=,Basic idea:,Zero-forcing equalizer,Communication channel,Equalizer,FIR filter contains 2N+1 coefficients
7、,Transmitted impulse sequence,Input to decision circuit,Channel impulse response,Equalizer impulse response,Coefficients of equivalent FIR filter,(in fact the equivalent FIR filter consists of 2M+1+2N coefficients, but the equalizer can only “handle” 2M+1 equations),FIR filter contains 2M+1 coeffici
8、ents,Overall channel,Zero-forcing equalizer,We want overall filter response to be non-zero at decision time k = 0 and zero at all other sampling times k 0 :,This leads to a set of 2M+1 equations:,(k = M),(k = 0),(k = M),Minimum Mean Square Error (MMSE),The aim is to minimize:,(or,depending on the so
9、urce),Equalizer,Channel,+,Estimate of k:th symbol,Input to decision circuit,Error,MSE vs. equalizer coefficients,quadratic multi-dimensional function of equalizer coefficient values,MMSE aim: find minimum value directly (Wiener solution), or use an algorithm that recursively changes the equalizer co
10、efficients in the correct direction (towards the minimum value of J)!,Illustration of case for two real-valued equalizer coefficients (or one complex-valued coefficient),Wiener solution,R = correlation matrix (M x M) of received (sampled) signal values p = vector (of length M) indicating cross-corre
11、lation between received signal values and estimate of received symbol copt = vector (of length M) consisting of the optimal equalizer coefficient values (We assume here that the equalizer contains M taps, not 2M+1 taps like in other parts of this presentation),We start with the Wiener-Hopf equations
12、 in matrix form:,Correlation matrix R & vector p,Before we can perform the stochastical expectation operation, we must know the stochastical properties of the transmitted signal (and of the channel if it is changing). Usually we do not have this information = some non-stochastical algorithm like Lea
13、st-mean-square (LMS) must be used.,where,M samples,Algorithms,Stochastical information (R and p) is available:,1. Direct solution of the Wiener-Hopf equations:2. Newtons algorithm (fast iterative algorithm) 3. Method of steepest descent (this iterative algorithm is slow but easier to implement),R an
14、d p are not available:,Use an algorithm that is based on the received signal sequence directly. One such algorithm is Least-Mean-Square (LMS).,Inverting a large matrix is difficult!,Conventional linear equalizer of LMS type,T,T,T,LMS algorithm for adjustment of tap coefficients,Transversal FIR filte
15、r with 2M+1 filter taps,Estimate of k:th symbol after symbol decision,Complex-valued tap coefficients of equalizer filter,+,Widrow,Received complex signal samples,Joint optimization of coefficients and phase,Equalizer filter,Coefficient updating,Phase synchronization,+,Minimize:,Godard,Proakis, Ed.3
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- EQUALIZATIONINAWIDEBANDTDMASYSTEMPPT
