ASTM D7720-11(2017) Standard Guide for Statistically Evaluating Measurand Alarm Limits when Using Oil Analysis to Monitor Equipment and Oil for Fitness and Contamination.pdf
《ASTM D7720-11(2017) Standard Guide for Statistically Evaluating Measurand Alarm Limits when Using Oil Analysis to Monitor Equipment and Oil for Fitness and Contamination.pdf》由会员分享,可在线阅读,更多相关《ASTM D7720-11(2017) Standard Guide for Statistically Evaluating Measurand Alarm Limits when Using Oil Analysis to Monitor Equipment and Oil for Fitness and Contamination.pdf(14页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D7720 11 (Reapproved 2017)Standard Guide forStatistically Evaluating Measurand Alarm Limits when UsingOil Analysis to Monitor Equipment and Oil for Fitness andContamination1This standard is issued under the fixed designation D7720; the number immediately following the designation indica
2、tes the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide provides specific requirements to
3、 statisticallyevaluate measurand alarm thresholds, which are called alarmlimits, as they are applied to data collected from in-service oilanalysis. These alarm limits are typically used for conditionmonitoring to produce severity indications relating to states ofmachinery wear, oil quality, and syst
4、em contamination. Alarmlimits distinguish or separate various levels of alarm. Fourlevels are common and will be used in this guide, though threelevels or five levels can also be used.1.2 A basic statistical process control technique describedherein is recommended to evaluate alarm limits when mea-s
5、urand data sets may be characterized as both parametric and incontrol. A frequency distribution for this kind of parametricdata set fits a well-behaved two-tail normal distribution havinga “bell” curve appearance. Statistical control limits are calcu-lated using this technique. These control limits
6、distinguish, at achosen level of confidence, signal-to-noise ratio for an in-control data set from variation that has significant, assignablecauses. The operator can use them to objectively create,evaluate, and adjust alarm limits.1.3 A statistical cumulative distribution technique describedherein i
7、s also recommended to create, evaluate, and adjustalarm limits. This particular technique employs a percentcumulative distribution of sorted data set values. The techniqueis based on an actual data set distribution and therefore is notdependent on a presumed statistical profile. The technique maybe
8、used when the data set is either parametric ornonparametric, and it may be used if a frequency distributionappears skewed or has only a single tail. Also, this techniquemay be used when the data set includes special cause variationin addition to common cause variation, although the techniqueshould b
9、e repeated when a special cause changes significantlyor is eliminated. Outputs of this technique are specific mea-surand values corresponding to selected percentage levels in acumulative distribution plot of the sorted data set. Thesepercent-based measurand values are used to create, evaluateand adj
10、ust alarm limits.1.4 This guide may be applied to sample data from testingof in-service lubricating oil samples collected from machinery(for example, diesel, pumps, gas turbines, industrial turbines,hydraulics) whether from large fleets or individual industrialapplications.1.5 This guide may also be
11、 applied to sample data fromtesting in-service oil samples collected from other equipmentapplications where monitoring for wear, oil condition, orsystem contamination are important. For example, it may beapplied to data sets from oil filled transformer and circuitbreaker applications.1.6 Alarm limit
12、 evaluating techniques, which are not statis-tically based are not covered by this guide.Also, the techniquesof this standard may be inconsistent with the following alarmlimit selection techniques: “rate-of-change,” absolutealarming, multi-parameter alarming, and empirically derivedalarm limits.1.7
13、The techniques in this guide deliver outputs that may becompared with other alarm limit selection techniques. Thetechniques in this guide do not preclude or supersede limits thathave been established and validated by an Original EquipmentManufacturer (OEM) or another responsible party.1.8 This stand
14、ard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.9 This international standa
15、rd was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.1This
16、guide is under the jurisdiction of ASTM Committee D02 on PetroleumProducts, Liquid Fuels, and Lubricants and is the direct responsibility of Subcom-mittee D02.96.04 on Guidelines for In-Services Lubricants Analysis.Current edition approved May 1, 2017. Published July 2017. Originally approvedin 2011
17、. Last previous edition approved in 2011 as D7720 11.DOI:10.1520 D7720-11R17.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standard
18、ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.12. Referenced Documents2.1 ASTM Standards:2D445 Test Method for Kinematic Viscosity of Trans
19、parentand Opaque Liquids (and Calculation of Dynamic Viscos-ity)D664 Test Method for Acid Number of Petroleum Productsby Potentiometric TitrationD974 Test Method for Acid and Base Number by Color-Indicator TitrationD2896 Test Method for Base Number of Petroleum Productsby Potentiometric Perchloric A
20、cid TitrationD4378 Practice for In-Service Monitoring of Mineral Tur-bine Oils for Steam, Gas, and Combined Cycle TurbinesD4928 Test Method for Water in Crude Oils by CoulometricKarl Fischer TitrationD5185 Test Method for Multielement Determination ofUsed and Unused Lubricating Oils and Base Oils by
21、Inductively Coupled Plasma Atomic Emission Spectrom-etry (ICP-AES)D6224 Practice for In-Service Monitoring of Lubricating Oilfor Auxiliary Power Plant EquipmentD6299 Practice for Applying Statistical Quality Assuranceand Control Charting Techniques to Evaluate AnalyticalMeasurement System Performanc
22、eD6304 Test Method for Determination of Water in Petro-leum Products, Lubricating Oils, and Additives by Cou-lometric Karl Fischer TitrationD6439 Guide for Cleaning, Flushing, and Purification ofSteam, Gas, and Hydroelectric Turbine Lubrication Sys-temsD6595 Test Method for Determination of Wear Met
23、als andContaminants in Used Lubricating Oils or Used HydraulicFluids by Rotating Disc Electrode Atomic Emission Spec-trometryD6786 Test Method for Particle Count in Mineral InsulatingOil Using Automatic Optical Particle CountersD7042 Test Method for Dynamic Viscosity and Density ofLiquids by Stabing
24、er Viscometer (and the Calculation ofKinematic Viscosity)D7279 Test Method for Kinematic Viscosity of Transparentand Opaque Liquids by Automated Houillon ViscometerD7414 Test Method for Condition Monitoring of Oxidationin In-Service Petroleum and Hydrocarbon Based Lubri-cants by Trend Analysis Using
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTM D7720 11 2017 Standard Guide for Statistically Evaluating Measurand Alarm Limits when Using Oil Analysis to Monitor Equipment and Fitness Contamination

链接地址:http://www.mydoc123.com/p-294283.html