2013-2014学年浙江逍林初中八年级12月教学质量抽测数学试卷与答案(带解析).doc
《2013-2014学年浙江逍林初中八年级12月教学质量抽测数学试卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2013-2014学年浙江逍林初中八年级12月教学质量抽测数学试卷与答案(带解析).doc(14页珍藏版)》请在麦多课文档分享上搜索。
1、2013-2014学年浙江逍林初中八年级 12月教学质量抽测数学试卷与答案(带解析) 选择题 等腰三角形的两边长分别为 1和 2,则其周长为( ) A 4 B 5 C 4或 5 D无法确定 答案: B. 试题分析: 当腰是 2,底边是 1时,能构成三角形,则其周长 =2+2+1=5; 当底边是 2,腰长是 1时,不能构成三角形故选 B 考点: 1等腰三角形的性质; 2三角形三边关系; 3分类讨论 线段 ,当 的值由 增加到 2时,该线段运动所经过的平面区域的面积为( ) A 6 B 8 C 9 D 10 答案: A. 试题分析:根据 , 的值由 增加到 2, 当 时, ,当 时, ,当 时,
2、,当 时,在坐标系中找出各点,作出图形,可知:运动经过的平面区域是个平行四边形的区域,高 CE=31=2,底 AD= , 则所求面积=32=6故选: A 考点:一次函数综合题 如图, ABC中, ABC与 ACB的平分线交于点 F,过点 F作 DE BC交 AB于点 D,交 AC 于点 E,那么下列结论: BDF和 CEF都是等腰三角形 ; DE=BD+CE; ADE的周长等于AB与 AC 的和; BF=CF 其中有( ) A B C D 答案: A. 试题分析: DE BC, DFB= FBC, EFC= FCB, BF 是 ABC的平分线, CF是 ACB的平分线, FBC= DFB, F
3、CE= FCB, DBF= DFB, EFC= ECF, DFB, FEC都是等腰三角形 DF=DB, FE=EC,即有 DE=DF+FE=DB+EC, ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC无法得出 BF=CF.故选 A 考点: 1等腰三角形的判定; 2角平分线的性质 已知 A、 B两地相距 4千米 .上午 8: 00,甲从 A地出发步行到 B地, 8: 20乙从 B地出发骑自行车到 A地,甲乙两人离 A地的距离(千米)与甲所用的时间(分)之间的关系如图所示 .由图中的信息可知,乙到达 A地的时间为( ) A 8: 30 B 8: 35 C 8: 40 D 8: 4
4、5 答案: C. 试题分析:因为甲 60分走完全程 4千米,所以甲的速度是 4千米 /时,由图中看出两人在走了 2千米时相遇,那么甲此时用了 0.5小时,则乙用了( 0.5 )小时,所以乙的速度为: ,所以乙走完全程需要时间为:(时) =20分,此时的时间应加上乙 先前迟出发的 20分,现在的时间为 8点40故选 C 考点:函数的图象 不等式组 的解集在数轴上表示正确的是( ) A B C D 答案: B. 试题分析:解不等式组 得, 故选 B 考点:在数轴上表示不等式的解集 若正比例函数 的图象经过点 和点 ,当时, ,则 的取值范围是( ) A B C D 答案: D. 试题分析: 正比例
5、函数 的图象经过点 和点 ,当 时, , 该函数图象是 随 的增大而减小, ,解得, 故选 D 考点:一次函数图象上点的坐标特征 已知不等式组 的解集为 ,则( ) A B C D 答案: D. 试题分析: ,解不等式 得, ,解不等式 得, ,根据 “同大取大 ”和解集为 ,得: 故选 D 考点:解一元一次不等式组 下列判断正确的是( ) A有一直角边相等的两个直角三角形全等 B腰相等的两个等腰三角形全等 C斜边相等的两个等腰直角三角形全等 D两个锐角对应相等的两个直角三角形全等 答案: C. 试题分析: A有一直角边对应相等,两直角相等,还差一个条件,不能判定两个直角三角形是否全等故 A正
6、确; B腰相等的两个等腰三角形不一定全等,因为底边不一定相等或没有对应角相等故 B错误; C斜边相等的两个等腰直角三角形全等,可以根据 SAS判定它们全等故 C正确; D一锐角和斜边对应相等的两个直角三角形,可以根据 SAS判定它们全等故 D错误 故选 C 考点:直角三角形全等的判定 如图所示,在 Rt ABC中, C=90, EF/AB, CEF=50,则 B的度数为( ) A 50 B 60 C 30 D 40 答案: D. 试题分析: C=90, CFE=90 CEF=40,又 EF AB, B= CFE=40故选 D 考点: 1三角形内角和定理; 2平行线的性质 根据下列表述,能确定位
7、置的是( ) A某电影院第 2排 B慈溪三北大街 C北偏东 30 D东经 118,北纬 40 答案: D. 试题分析:在平面内,点的位置是由一对有序实数确定的,只有 D能确定一个位置,故选 D 考点:坐标确定位置 填空题 已知:如图, ABC是边长 3cm的等边三角形,动点 P、 Q 同时从 A、 B两点出发,分别沿 AB、 BC 方向匀速移动,它们的速度都是 1cm/s,当点 P到达点 B时, P、 Q 两点停止当 t=_时, PBQ 是直角三角形 . 答案:或 2 试题分析:根据题意得 AP= cm, BQ= cm, ABC中, AB=BC=3cm, B=60, BP=( ) cm, PB
8、Q 中, BP= , BQ= ,若 PBQ 是直角三角形,则 BQP=90或 BPQ=90, 当 BQP=90时, BQ= BP,即, (秒), 当 BPQ=90时, BP= BQ, ,(秒), 当 t=1秒或 t=2秒时, PBQ 是直角三角形故答案:为: 1或 2 考点: 1一元二次方程的应用; 2等边 三角形的性质; 3勾股定理 如图, C、 E和 B、 D、 F 分别在 GAH的两边上,且 AB=BC=CD=DE=EF,若 A=18,则 GEF的度数是 _ 答案: 试题分析: AB=BC, ACB= A=18, CBD= A+ ACB=36, BC=CD, CDB= CBD=36, D
9、CE= A+ CDA=18+36=54, CD=DE, CED= DCE=54, EDF= A+ AED=18+54=72, DE=EF, EFD= EDF=72, GEF= A+ AFE=18+72=90故答案:为: 90 考点:等腰三角形的性质 如图,已知 D, E是 ABC中 BC 边上的两点,且 AD=AE,请你再添加一个条件: ,使 ABD ACE 答案: AB=AC 或 BD=CE或 B= C或 BAE= CAD或 BAD= CAE或 BE=CD 试题分析:加 AB=AC B= C; AD=AE ADC= AEB ADB= AEC,就可以用 AAS 判定 ABD ACE; 加 BD
10、=CE; AD=AE ADC= AEB ADB= AEC,可以用 SAS判定 ABD ACE; 加 B= C; AD=AE ADC= AEB ADB= AEC,就可以用 AAS 判定 ABD ACE; 加 BAE= CAD BAD= CAE; AD=AE ADC= AEB ADB= AEC,可以用 ASA判定 ABD ACE; 加 BAD= CAE; AD=AE ADC= AEB ADB= AEC,可以用 ASA判定 ABD ACE; 加 BE=CD BD=CE; AD=AE ADC= AEB ADB= AEC,可以用 SAS判定 ABD ACE 所以填 AB=AC 或 BD=CE或 B= C
11、或 BAE= CAD或 BAD= CAE或BE=CD 考点: 1全等三角形的判定; 2开放型 如图,在同一平面直角坐标系中作出相应的两个一次函数的图像,则不等式组 的解为 . 答案: 试题分析:直线 的 x轴上方,以及直线 在 x轴下边的部分,自变量 x的取值范围是: 故不等式组 的解集是:故填: 考点:一次函数与一元一次不等式 如图,是象棋棋盘的一部分,若 “帅 ”位于点( 2, -1)上, “相 ”位于点( 4,-1)上,则 “炮 ”所在的点的坐标是 . 答案:( 1, 2) 试题 分析: “帅 ”位于点( 2, 1)上, “相 ”位于点( 4, 1)上, “帅 ”,“相 ”的横坐标为 2
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 2014 学年 浙江 初中 年级 12 教学质量 抽测 数学试卷 答案 解析
