(浙江专用)2020版高考数学大一轮复习第四章导数及其应用第2节导数与函数的单调性课件.pptx
《(浙江专用)2020版高考数学大一轮复习第四章导数及其应用第2节导数与函数的单调性课件.pptx》由会员分享,可在线阅读,更多相关《(浙江专用)2020版高考数学大一轮复习第四章导数及其应用第2节导数与函数的单调性课件.pptx(31页珍藏版)》请在麦多课文档分享上搜索。
1、考试要求 1.了解函数的单调性与导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间.,第2节 导数与函数的单调性,知 识 梳 理,1.函数的单调性与导数的关系 已知函数f(x)在某个区间内可导, (1)如果f(x)0,那么函数yf(x)在这个区间内_; (2)如果f(x)0,那么函数yf(x)在这个区间内_.,单调递增,单调递减,2.利用导数求函数单调区间的基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f(x);(3)由f(x)0(或0)解出相应的x的取值范围.当f(x)0时,f(x)在相应的区间内是单调递增函数;当f(x)0时,f(x)在相应的区间内是单调递减函数.一般
2、需要通过列表,写出函数的单调区间.,3.已知单调性求解参数范围的步骤为:(1)对含参数的函数f(x)求导,得到f(x);(2)若函数f(x)在a,b上单调递增,则f(x)0恒成立;若函数f(x)在a,b上单调递减,则f(x)0恒成立,得到关于参数的不等式,解出参数范围;(3)验证参数范围中取等号时,是否恒有f(x)0.若f(x)0恒成立,则函数f(x)在(a,b)上为常数函数,舍去此参数值.,常用结论与易错提醒 (1)解决一次、二次函数的单调性问题不必用导数. (2)有些初等函数(如f(x)x3x)的单调性问题也不必用导数. (3)根据单调性求参数常用导数不等式f(x)0或f(x)0求解,注意
3、检验等号. (4)注意函数、导函数的定义域.,基 础 自 测,1.思考辨析(在括号内打“”或“”)(1)若可导函数f(x)在(a,b)内单调递增,那么一定有f(x)0.( )(2)如果函数f(x)在某个区间内恒有f(x)0,则f(x)在此区间内没有单调性.( )(3)f(x)0是f(x)为增函数的充要条件.( )解析 (1)f(x)在(a,b)内单调递增,则有f(x)0.(3)f(x)0是f(x)为增函数的充分不必要条件.答案 (1) (2) (3),2.函数f(x)exx的单调递增区间是( )A.(,1 B.1,)C.(,0 D.(0,)解析 令f(x)ex10得x0,所以f(x)的递增区间
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用 2020 高考 数学 一轮 复习 第四 导数 及其 应用 函数 调性 课件 PPTX
