2018_2019学年度高中数学第一章空间几何体章末总结课件新人教A版必修2.ppt
《2018_2019学年度高中数学第一章空间几何体章末总结课件新人教A版必修2.ppt》由会员分享,可在线阅读,更多相关《2018_2019学年度高中数学第一章空间几何体章末总结课件新人教A版必修2.ppt(38页珍藏版)》请在麦多课文档分享上搜索。
1、章末总结,网络建构,知识辨析,判断下列说法是否正确(请在括号中填“”或“”) 1.有两个面互相平行,其余各面都是平行四边形的几何体叫做棱柱.( ) 2.有一个面是多边形,其余各面都是梯形的几何体叫做棱台.( ) 3.圆锥是由一个直角三角形绕其一边旋转得来的.( ) 4.到定点的距离等于定长的点的集合是球.( ) 5.若一个几何体的三视图都是一样的图形,则这个几何体一定是球.( ) 6.正方形利用斜二测画法画出的直观图是菱形.( ) 7.圆台的侧面积公式是(r+R)l,其中r和R分别是圆台的上、下底面半径,l是其母线长.( ),主题串讲 方法提炼总结升华,一、空间几何体的结构特征 【典例1】 根
2、据下列对几何体结构特征的描述,说出几何体的名称. (1)由六个面围成,其中一个面是正五边形,其余各面是有公共顶点的三 角形;,解:(1)由棱锥的几何特点知几何体是五棱锥.,解:(2)两底边中点的连线与两底垂直,因此旋转得到的几何体是圆台. (3)绕较长的底边所在直线旋转一周形成的几何体是一圆柱与一圆锥组成的组合体.,(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180形成的封闭曲面所围成的图形; (3)一个直角梯形绕较长的底边所在的直线旋转一周形成的曲面所围成的几何体.,规律方法 有关空间几何体的概念辨析问题,要紧紧围绕基本概念、结构特征逐条验证,且勿想当然做出判断.,二、空间几何体的三
3、视图与直观图 【典例2】 (1)在一个几何体的三视图中,正视图与俯视图如图所示,则侧视图为( ),解析:(1)由正视图、俯视图可知该几何体由半圆锥与三棱锥构成,且有共同的顶点,中间的线是可以看得到的为实线,所以侧视图为D项. 答案:(1)D,(2)如图所示为水平放置的ABC在坐标系中的直观图,其中D是AC的中点,且ACB30,BAC30,则原图形中与线段BD的长相等的线段有 条.,解析:(2)由斜二测画法可知,原图形为直角三角形,且B=90,又D为AC的中点,由直角三角形的性质可知, BD=AD=DC,即与BD的长度相等的线段有2条.答案:(2)2,规律方法 (1)由三视图还原几何体时,要根据
4、几何体的正视图、侧视图、俯视图的几何特征,想象整个几何体的特征,从而判断三视图所描述的几何体. (2)有关直观图的计算问题,关键是把握直观图与原图形的联系.,规律方法 由几何体的三视图求几何体的体积、表面积问题,一般情况下先确定几何体的结构特征,再由三视图中的数据确定几何体中的相关数据,代入公式求解即可.,四、球与其他几何体的组合问题 【典例4】 (2018湖南郴州二模)底面为正方形,顶点在底面的投影为底面中心的棱锥P-ABCD的五个顶点在同一球面上,若该棱锥的底面边长为4,侧棱长为2,则这个球的表面积为 .,解析:正四棱锥P-ABCD外接球的球心在它的高PO1上,记为O,OP=OA=R, P
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 _2019 学年度 高中数学 第一章 空间 几何体 总结 课件 新人 必修 PPT
