ASTM F83-1971(2013) Standard Practice for Definition and Determination of Thermionic Constants of Electron Emitters《电子发射极的热离子常数定义和测定的标准操作规程》.pdf
《ASTM F83-1971(2013) Standard Practice for Definition and Determination of Thermionic Constants of Electron Emitters《电子发射极的热离子常数定义和测定的标准操作规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM F83-1971(2013) Standard Practice for Definition and Determination of Thermionic Constants of Electron Emitters《电子发射极的热离子常数定义和测定的标准操作规程》.pdf(6页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F83 71 (Reapproved 2013)Standard Practice forDefinition and Determination of Thermionic Constants ofElectron Emitters1This standard is issued under the fixed designation F83; the number immediately following the designation indicates the year of originaladoption or, in the case of revis
2、ion, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscriptepsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONCathode materials are often evaluated by an emission test which in some ways measures thetemperature-
3、limited emission. A more basic approach to this problem is to relate the emission tofundamental properties of the emitter, in particular, the work function. Comparisons are convenientlymade between emitters using the thermionic constants, that is, the work function, the emissionconstant, and the tem
4、perature dependence of the work function. These quantities are independent ofgeometry and field effects when properly measured. Although referred to as “constants” thesequantities show variations under different conditions. Considerable confusion exists over thedefinition, interpretation, and usage
5、of these terms and, hence, there is a need for at least a generalagreement on nomenclature.1. Scope1.1 This practice covers the definition and interpretation ofthe commonly used thermionic constants of electron emitters(1, 2, 3),2with appended standard methods of measurement.1.2 The values stated in
6、 SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and heal
7、th practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3F8 Recommended Practice for Testing Electron Tube Mate-rials Using Reference Triodes43. Terminology3.1 Definitions:3.1.1 effective work function, the work function obtained
8、by the direct substitution of experimentally determined valuesof emission current density and temperature into theRichardson-Dushman equation of electron emission of theform:J 5 AT2e2e/kT(1)For direct calculation of the work function, this is conve-niently put in the form: 5 kT/e!lnAT2/J! (2)where:J
9、 = emission current density in A/cm2measured underspecified field conditions except zero field. (J0= emis-sion current density in A/cm2measured under zero fieldconditions.)A = the theoretical emission constant, which is calculatedfrom fundamental physical constants, with its valuegenerally taken as
10、120 A/cm2K2. A more exact calcu-lation (3) gives 120.17 which is used in determining theeffective work function.T = cathode temperature, K.e = electronic charge, C.e = natural logarithmic base.k = Boltzmanns constant. = work function, V.The form of Eq 1 is a simplified form of the emission1This prac
11、tice is under the jurisdiction of ASTM Committee F01 on Electronicsand is the direct responsibility of Subcommittee F01.03 on Metallic Materials.Current edition approved May 1, 2013. Published May 2013. Originallyapproved in 1967. Last previous edition approved in 2009 as F83 71 (2009). DOI:10.1520/
12、F0083-71R13.2The boldface numbers in parentheses refer to references at the end of thispractice.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Docume
13、nt Summary page onthe ASTM website.4Withdrawn.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1equation which assumes zero reflection coefficient for electronswith energy normally sufficient for emission at the emittersurface. The effe
14、ctive work function is an empirical quantityand represents an average of the true work function, giving themaximum information obtainable from a single measurementof the thermionic emission.3.1.2 Richardson work function, 0the work functionusually obtained graphically from a Richardson plot, which i
15、sa plot of ln (J/T2) versus l/T using data of emission measure-ments at various temperatures. It is the work function obtainedfrom Eq 1, with the value of A determined graphically, insteadof using the theoretical value. For better visualization of theRichardson plot, Eq 1 may be put in the form:lnJ/
16、T2! 5 lnA 2 e/kT!0(3)It can be seen (Fig. X1.4) that the Richardson work func-tion 0is obtained from the slope of the graph, and theemission constant A from the intercept (l/T = 0) on the ln(J/T2) axis. The Richardson work function is also an empiri-cal quantity. Its value is found with reasonable a
17、ccuracyfrom the graph. However, large errors in the value of Amaybe expected (4). Considering only one factor, a slight inaccu-racy in the measurement of temperature introduces a largeerror in the value of A. Values of A obtained on practicalemitters can range from about 0.1 to 200 A/cm2K2.3.1.3 tru
18、e work function, tthe difference between theFermi energy and the surface potential energy, which is themaximum potential energy of an electron at the surface of theemitter, or the energy just necessary to remove an electronfrom the emitter. The true work function, t, is expressed involts or sometime
19、s as etin electron volts. For a polycrystal-line surface, the true work function will vary with position onthe surface. It will also be a function of temperature. The truework function is primarily a theoretical concept used inanalysis involving a theoretical model of the surface.4. Interpretation a
20、nd Relation of Terms4.1 Both the effective () and the Richardson (0) workfunctions are derived from the same basic equation for electronemission. They differ in the manner of applying the equation.The effective work function represents a direct computationusing the theoretical value of the emission
21、constant A of theequation. The Richardson work function is based on a plot ofemission data at different temperatures from which both thework function and emission constant were obtained. Workfunction varies slightly with temperature. If this variation isapproximately linear, it can be expressed as a
22、 simple tempera-ture coefficient of the work function, , V/K. Under theseconditions, the emission data yield a straight-line Richardsonplot and, also, result in a straight-line plot of effective workfunction with temperature. These and other relations can beseen by introducing into the Richardson-Du
23、shman equation(Eq 1) and considering the Richardson work function asrepresenting the value at 0 K. The effective work function attemperature T is then equal to 0+ T. Substituting this intothe equation gives:J 5 AT2e2e/kT!01 T!(4)which can be put in the form:J 5 Ae2e/k!T2e2e0/kT(5)It can be seen from
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMF8319712013STANDARDPRACTICEFORDEFINITIONANDDETERMINATIONOFTHERMIONICCONSTANTSOFELECTRONEMITTERS 电子

链接地址:http://www.mydoc123.com/p-532673.html