ASTM E308-2017 5000 Standard Practice for Computing the Colors of Objects by Using the CIE System《用CIE系统计算物体颜色的标准实施规程》.pdf
《ASTM E308-2017 5000 Standard Practice for Computing the Colors of Objects by Using the CIE System《用CIE系统计算物体颜色的标准实施规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM E308-2017 5000 Standard Practice for Computing the Colors of Objects by Using the CIE System《用CIE系统计算物体颜色的标准实施规程》.pdf(45页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E308 17Standard Practice forComputing the Colors of Objects by Using the CIE System1This standard is issued under the fixed designation E308; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A
2、 number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.INTRODUCTIONStandard tables (Tables 14) of color matching fu
3、nctions and illuminant spectral power distributionshave since 1931 been defined by the CIE, but the CIE has eschewed the role of preparing tables oftristimulus weighting factors for the convenient calculation of tristimulus values. There havesubsequently appeared numerous compilations of tristimulus
4、 weighting factors in the literature withdisparity of data resulting from, for example, different selections of wavelength intervals and methodsof truncating abbreviated wavelength ranges. In 1970, Foster et al. (1)2proposed conventions tostandardize these two features, and Stearns (2) published a m
5、ore complete set of tables. Stearns workand later publications such as the 1985 revision of E308 have greatly reduced the substantial variationsin methods for tristimulus computation that existed several decades ago.The disparities among earlier tables were largely caused by the introduction of comp
6、utations basedon 20-nm wavelength intervals. With the increasing precision of modern instruments, there is alikelihood of a need for tables for narrower wavelength intervals. Stearns tables, based on a 10-nminterval, did not allow the derivation of consistent tables with wavelength intervals less th
7、an 10 nm.The 1-nm table must be designated the basic table if others with greater wavelength intervals are tohave the same white point, and this was the reason for the 1985 revision of E308, resulting in tablesthat are included in the present revision as Tables 5.The 1994 revision was made in order
8、to introduce to the user a method of reducing the dependenceof the computed tristimulus values on the bandpass of the measuring instrument, using methods thatare detailed in this practice.1. Scope1.1 This practice provides the values and practical compu-tation procedures needed to obtain CIE tristim
9、ulus values fromspectral reflectance, transmittance, or radiance data for object-color specimens.1.2 Procedures and tables of standard values are given forcomputing from spectral measurements the CIE tristimulusvalues X, Y, Z, and chromaticity coordinates x, y for the CIE1931 standard observer and X
10、10,Y10,Z10and x10.y10for theCIE 1964 supplementary standard observer.1.3 Standard values are included for the spectral power ofsix CIE standard illuminants and three CIE recommendedfluorescent illuminants.1.4 Procedures are included for cases in which data areavailable only in more limited wavelengt
11、h ranges than thoserecommended, or for a measurement interval wider than thatrecommended by the CIE. This practice is applicable tospectral data obtained in accordance with Practice E1164 with1-, 5-, 10-, or 20-nm measurement interval.1.5 Procedures are included for cases in which the spectraldata a
12、re, and those in which they are not, corrected forbandpass dependence. For the uncorrected cases, it is assumedthat the spectral bandpass of the instrument used to obtain thedata was approximately equal to the measurement interval and1This practice is under the jurisdiction of ASTM Committee E12 on
13、Color andAppearance and is the direct responsibility of Subcommittee E12.04 on Color andAppearance Analysis.Current edition approved May 1, 2017. Published August 2017. Originallyapproved in 1966. Last previous edition approved in 2015 as E308 15. DOI:10.1520/E0308-17.2The boldface numbers in parent
14、heses refer to the list of references at the end ofthis practice.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization esta
15、blished in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1was triangular in shape. These choices are believed to corre-spond to the most widely used industrial pr
16、actice.1.6 This practice includes procedures for conversion ofresults to color spaces that are part of the CIE system, such asCIELAB and CIELUV (3). Equations for calculating colordifferences in these and other systems are given in PracticeD2244.1.7 The values stated in SI units are to be regarded a
17、sstandard. No other units of measurement are included in thisstandard.1.8 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health and environmental practices an
18、d deter-mine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-
19、mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:3D2244 Practice for Calculation of Color Tolerances andColor Differences from Instrumentally Measured ColorCoordinatesE284 Terminology of AppearanceE313 Practice for
20、 Calculating Yellowness and WhitenessIndices from Instrumentally Measured Color CoordinatesE1164 Practice for Obtaining Spectrometric Data for Object-Color EvaluationE2022 Practice for Calculation of Weighting Factors forTristimulus IntegrationE2729 Practice for Rectification of SpectrophotometricBa
21、ndpass Differences2.2 ANSI Standard:PH2.23 Lighting Conditions for Viewing PhotographicColor Prints and Transparencies42.3 CIE/ISO Standards:ISO Standard 11664-1:2007(E)/CIE S 013-1/E:2006 Stan-dard Colorimetric Observers4,5ISO Standard 11664-2:2007(E)/CIE S 014-2/E:2006 Colori-metric Illuminants4,5
22、CIE Standard D 001 Colorimetric Illuminants and Observers(Disk)52.4 ASTM Adjuncts:Computer disk containing Tables 5 and 663. Terminology3.1 Definitions of terms in Terminology E284 are applicableto this practice (see also Ref (4).3.2 Definitions:3.2.1 bandpass, adjhaving to do with a passband.3.2.2
23、bandwidth, nthe width of a passband at its half-peaktransmittance.3.2.3 chromaticity, nthe color quality of a color stimulusdefinable by its chromaticity coordinates.3.2.4 chromaticity coordinates, nthe ratio of each of thetristimulus values of a psychophysical color (see section3.2.7.11) to the sum
24、 of the tristimulus values.3.2.4.1 DiscussionIn the CIE 1931 standard colorimetricsystem, the chromaticity coordinates are: x = X/(X+Y+Z),y=Y/(X+Y+Z), z=Z/(X+Y+Z); in the CIE 1964 supple-mentary colorimetric system, the same equations apply with allsymbols having the subscript 10 (see 3.2.7).3.2.5 C
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME30820175000STANDARDPRACTICEFORCOMPUTINGTHECOLORSOFOBJECTSBYUSINGTHECIESYSTEM CIE 系统 计算 物体 颜色 标准

链接地址:http://www.mydoc123.com/p-527368.html