ASTM D7990-2015 5422 Standard Test Method for Using Reflectance Spectra to Produce an Index of Temperature Rise in Polymeric Siding《利用反射光谱获得聚合物墙板温升指数的标准试验方法》.pdf
《ASTM D7990-2015 5422 Standard Test Method for Using Reflectance Spectra to Produce an Index of Temperature Rise in Polymeric Siding《利用反射光谱获得聚合物墙板温升指数的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D7990-2015 5422 Standard Test Method for Using Reflectance Spectra to Produce an Index of Temperature Rise in Polymeric Siding《利用反射光谱获得聚合物墙板温升指数的标准试验方法》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D7990 15Standard Test Method forUsing Reflectance Spectra to Produce an Index ofTemperature Rise in Polymeric Siding1This standard is issued under the fixed designation D7990; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revi
2、sion, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method uses reflectance spectra from theultraviolet, visible, and near infrared region to
3、produce anindex of the temperature rise of polymeric siding aboveambient temperature that occurs due to absorption of the sunsenergy.1.2 The test method determines the intensity factor of asample color. The intensity factor is a function of the samplesreflectance spectra and the energy output of the
4、 heat lamp usedin the test method Test Method D4803.1.3 Appendix X1 provides a method for using the intensityfactor to determine the maximum temperature rise of a sampleunder severe solar exposure.1.3.1 A correlation between intensity factor and heatbuildup (temperature rise) as predicted by Test Me
5、thod D4803exists.1.3.2 The heat buildup (temperature rise) for a polymericbuilding product specimen is determined from its reflectancespectra and the correlations regression equation.1.4 UnitsThe values stated in SI units are to be regardedas standard. No other units of measurement are included in t
6、hisstandard.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.
7、Referenced Documents2.1 ASTM Standards:D2244 Practice for Calculation of Color Tolerances andColor Differences from Instrumentally Measured ColorCoordinatesD4803 Test Method for Predicting Heat Buildup in PVCBuilding ProductsE903 Test Method for Solar Absorptance, Reflectance, andTransmittance of Ma
8、terials Using Integrating SpheresE1331 Test Method for Reflectance Factor and Color bySpectrophotometry Using Hemispherical Geometry3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 fractional absorptanceone minus FractionalReflectance,1R.3.1.2 fractional reflectancethe percenta
9、ge of energy re-flected by a sample at a given wavelength, divided by 100.3.1.3 intensity factoran indicator of a specimens heatbuildup based on its reflectance spectrum and the energy outputof the IR lamp used in Test Method D4803.3.1.3.1 DiscussionThe intensity factor is a summationproduct of the
10、heat lamps relative intensity and the specimensfractional absorptance at 20 nm intervals between 200 and2,500 nm.3.1.4 heat buildupthe temperature rise above that ofambient air due to the amount of energy absorbed from the sunby a specimen.3.1.5 relative intensity (of heat lamp)the lamps spectralout
11、put across the range of 200 nm to 2500 nm, normalized toa value of 100 at the lamps maximum output.4. Summary of Test Method4.1 The specimens size must cover the spectrophotometersmeasurement port, typically 25.4 mm in diameter. Typicalsample dimensions are 102 by 102 by 1.3 mm.4.2 Ablack backer car
12、d or plaque is used directly behind thespecimen to absorb any radiant energy transmitted through thespecimen.4.3 The spectral reflectance curve of the test specimen ismeasured to determine the amount of energy the specimenabsorbs at each wavelength.4.4 The intensity factor of the test specimen is th
13、e result ofa series summation for the specimens spectral absorptance andthe relative intensity of the IR lamp used in Test MethodD4803. The product of the specimens spectral absorptance andrelative intensity is determined for the spectral region of 200 2,500 nm at an interval of 20 nm1This test meth
14、od is under the jurisdiction of ASTM Committee D20 on Plasticsand is the direct responsibility of Subcommittee D20.24 on Plastic BuildingProducts.Current edition approved Dec. 1, 2015. Published December 2015. DOI:10.1520/D799015Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West
15、Conshohocken, PA 19428-2959. United States14.5 Appendix X1 provides a method for using the intensityfactor to determine the maximum temperature rise of a sampleunder severe solar exposure.4.5.1 A correlation of intensity factors and heat buildup(temperature rise) results from Test Method D4803 for a
16、number of specimens was determined to derive an equationexpressing a specimens temperature rise as a function of itsreflectance.4.5.2 Aspecimens heat buildup is determined by measuringits reflectance in the UV, VIS, and NIR spectral region and thecorrelations regression equation.5. Significance and
17、Use5.1 Heat buildup of polymeric building products due toabsorption of energy from the sun may lead to distortionproblems. Test Method Test Method D4803 was developed topredict a building products heat buildup (temperature rise). Itcompares the relative temperature changes of a pigmentedPVC product
18、and a PVC panel containing carbon black whenexposed to an infrared heat lamp. Based on experimentalresults that determined the maximum temperature for this blackpanel under both solar exposure and in the laboratory test, amethod for determining the exterior temperature rise and heatbuildup for a tes
19、t panel was developed. This test has shown tobe useful and reliable but is time consuming and requirescontrolled conditions to minimize sources of variation.5.2 This test method uses a spectrophotometer to measure aspecimens reflectance in the ultraviolet, visible, and nearinfrared region and uses t
20、he spectral power distribution of theheat lamp specified in Test Method D4803 to determine anintensity factor, which is an index of the relative spectralenergy absorption by the specimen.5.2.1 The temperature rise that would occur under an TestMethod D4803 test is proportional to this intensity fact
21、or. Anequation has been derived from the correlation of the intensityfactor and temperature rise data obtained from Test MethodD4803 testing of samples with a wide range of color andlightness. A total of 99 samples were studied and representsamples with the lowest to highest temperature rise. Linear
22、regression analysis yields a R2 correlation coefficient of 0.98.5.2.2 The procedure in Appendix X1 allows prediction oftemperature rise that would result from testing of the samesample under Test Method D4803.5.2.3 As this procedure is a correlation to results obtainedby Test Method D4803, it is a m
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD799020155422STANDARDTESTMETHODFORUSINGREFLECTANCESPECTRATOPRODUCEANINDEXOFTEMPERATURERISEINPOLYMERICSIDING

链接地址:http://www.mydoc123.com/p-526608.html