ASTM D7583-2016 red 9634 Standard Test Method for John Deere Coolant Cavitation Test《约翰迪尔冷却剂空泡试验的标准试验方法》.pdf
《ASTM D7583-2016 red 9634 Standard Test Method for John Deere Coolant Cavitation Test《约翰迪尔冷却剂空泡试验的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D7583-2016 red 9634 Standard Test Method for John Deere Coolant Cavitation Test《约翰迪尔冷却剂空泡试验的标准试验方法》.pdf(29页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D7583 09D7583 16Standard Test Method forJohn Deere Coolant Cavitation Test1This standard is issued under the fixed designation D7583; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number
2、in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method is commonly referred to as the John Deere Cavitation Test.2 The test method defines a heavy-duty dieselengine to evaluate coo
3、lant protection as related to cylinder liner pitting caused by cavitation.1.2 The values stated in SI units are to be regarded as the standard. The values given in parenthesisparentheses are forinformation only. The only exception is where there is no direct SI equivalent such as screw threads, nati
4、onal pipethreads/diameters, and tubing sizes.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety and health practices and determine the applicability of regulat
5、orylimitations prior to use. See Annex A1 for general safety precautions.1.4 Table of Contents:Scope 1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus 6Test Engine Configuration 6.1Test Engine 6.1.1Test Stand Configuration 6.2Engine Mounting 6.2.1Intake Air
6、System 6.2.2Aftercooler 6.2.3Exhaust System 6.2.4Fuel System 6.2.5Coolant System 6.2.6Oil System 6.2.7Oil Volume 6.2.7.1Pressurized Oil Fill System 6.2.7.2External Oil System 6.2.7.3Oil Sample Valve Location 6.2.7.4Unacceptable Oil System Materials 6.2.7.5Crankcase Aspiration 6.3Blowby Rate 6.4Syste
7、m Time Responses 6.5Clearance Measurements 6.6Engine and Cleaning Fluids 7Engine Oil 7.1Test Fuel 7.2Test Coolant 7.3Solvent 7.4Preparation of Apparatus 8Cleaning of Parts 8.1General 8.1.1Engine Block 8.1.2Cylinder Head 8.1.31 This test method is under the jurisdiction of ASTM Committee D15 on Engin
8、e Coolants and Related Fluids and is the direct responsibility of Subcommittee D15.11 onHeavy Duty Coolants.Current edition approved Nov. 1, 2009April 1, 2016. Published July 2010May 2016. Originally approved in 2009. Last previous edition approved in 2009 as D7583-09.DOI: 10.1520/D7583-09.10.1520/D
9、7583-16.2 American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard.Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
10、of infringement of such rights, are entirely their ownresponsibility.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict
11、 all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428
12、-2959. United States1Rocker Cover and Oil Pan 8.1.4External Oil System 8.1.5Rod Bearing Cleaning and Measurement 8.1.6Ring Cleaning and Measurement 8.1.7Injector Nozzle 8.1.8Pistons 8.1.9Engine Assembly 8.2General 8.2.1Parts Reuse and Replacement 8.2.2Build-Up Oil 8.2.3Coolant Thermostat 8.2.4Fuel I
13、njectors 8.2.5New Parts 8.2.6Operational Measurements 8.3Units and Formats 8.3.1Instrumentation Calibration 8.3.2Fuel Consumption Rate Measurement Calibration 8.3.2.1Temperature Measurement Calibration 8.3.2.2Pressure Measurement Calibration 8.3.2.3Temperatures 8.3.3Measurement Location 8.3.3.1Coola
14、nt Out Temperature 8.3.3.2Coolant In Temperature 8.3.3.3Fuel In Temperature 8.3.3.4Oil Gallery Temperature 8.3.3.5Intake Air Temperature 8.3.3.6Intake Air after Compressor Temperature 8.3.3.7Intake Manifold Temperature 8.3.3.8Exhaust Temperature 8.3.3.9Exhaust after Turbo Temperature 8.3.3.10Additio
15、nal Temperatures 8.3.3.11Pressures 8.3.4Measurement Location and Equipment 8.3.4.1Condensation Trap 8.3.4.2Coolant Pressure 8.3.4.3Fuel Pressure 8.3.4.4Oil Gallery Pressure 8.3.4.5Intake Air Pressure 8.3.4.6Intake Air after Compressor Pressure 8.3.4.7Intake Manifold Pressure 8.3.4.8Exhaust after Tur
16、bo Pressure 8.3.4.9Crankcase Pressure 8.3.4.10Additional Pressures 8.3.4.11Flow Rates 8.3.5Flow Rate Location and Measurement Equipment 8.3.5.1Blowby 8.3.5.2Fuel Flow 8.3.5.3Engine/Stand Calibration and Non-Reference CoolantTests9Engine/Stand Calibration and Non-Reference CoolantTests9General 9.1New
17、 Test Stand 9.2New Test Stand Calibration 9.2.1Stand Calibration Period 9.3Stand Modification and Calibration Status 9.4Test Numbering System 9.5General 9.5.1Reference Coolant Tests 9.5.2Non-Reference Coolant Tests 9.5.3Reference Coolant Test Acceptance 9.6Reference Coolant Accountability 9.7Last St
18、art Date 9.8Donated Reference Coolant Test Programs 9.9Adjustments to Reference Coolant Calibration Periods 9.10Procedure Development 9.10.1Parts and Fuel Shortages 9.10.2Reference Coolant Test Data Flow 9.10.3Special Use of The Reference Coolant Calibration Sys-tem9.10.4Special Use of The Reference
19、 Coolant Calibration System 9.10.4Procedure 10Engine Installation and Stand Connections 10.1Break-in 10.2Coolant System Fill for Break-in 10.2.1Oil Fill for Break-in 10.2.2Engine Build Committed 10.2.3Break-in Conditions 10.2.4D7583 162Shutdown during Break-in 10.2.5250-Hour Test Procedure 10.3Coola
20、nt System Fill for Test 10.3.1Zero-Hour Coolant Sample 10.3.1.1Oil Fill for Test 10.3.2Zero-Hour Oil Sample 10.3.2.1Warm-Up 10.3.3Warm-up Conditions 10.3.3.1Shutdown during Warm-up 10.3.3.220-Hour Steady State Extended Break-in 10.3.420-Hour Steady State Extended Break-in Conditions 10.3.4.1Shutdown
21、 during 20-Hour Extended Break-in 10.3.4.2230-Hour Cyclic 10.4230-Hour Cyclic Conditions 10.4.1Shutdown during 230-Hour Cyclic 10.4.2Shutdown and Maintenance 10.5Normal Shutdown 10.5.1Emergency Shutdown 10.5.2Maintenance 10.5.3Downtime 10.5.4Operating conditions 10.6Stage Transition Times 10.6.1Test
22、 Timer 10.6.2Operational Data Acquisition 10.6.3Operational Data Reporting 10.6.4Coolant Sampling 10.6.5Oil Sampling 10.6.6End of Test (EOT) 10.7Shutdown 10.7.1Oil Drain 10.7.2Coolant Drain 10.7.3Engine Disassembly 10.7.4Calculations, Ratings and Test Validity 11Liner Pit Count 11.1Coolant Analysis
23、11.2Oil Analyses 11.3Assessment of Operational Validity 11.4Report 12Report Forms 12.1Reference Coolant Test 12.2Electronic Transmission of Test Results 12.3Precision and Bias 13Precision 13.1Intermediate Precision Conditions 13.1.1Intermediate Precision Limit 13.1.2Reproducibility Conditions 13.2Re
24、producibility Limit 13.2.1Bias 13.3Keywords 14AnnexesSafety Precautions Annex A1Intake Air Aftercooler Annex A2Engine Build Parts Kit Annex A3Sensor Locations, Special Hardware, and Engine BlockModificationsAnnex A4Sensor Locations, Special Hardware, and Engine BlockModificationsAnnex A4Fuel Specifi
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD75832016RED9634STANDARDTESTMETHODFORJOHNDEERECOOLANTCAVITATIONTEST 约翰 冷却剂 空泡 试验 标准 方法 PDF

链接地址:http://www.mydoc123.com/p-525877.html