ASTM D6515-2000(2016) 4324 Standard Test Method for Rubber Shaft Seals Determination of Recovery From Bending《测定橡胶轴密封件从弯曲复原的标准试验方法》.pdf
《ASTM D6515-2000(2016) 4324 Standard Test Method for Rubber Shaft Seals Determination of Recovery From Bending《测定橡胶轴密封件从弯曲复原的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D6515-2000(2016) 4324 Standard Test Method for Rubber Shaft Seals Determination of Recovery From Bending《测定橡胶轴密封件从弯曲复原的标准试验方法》.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D6515 00 (Reapproved 2016)Standard Test Method forRubber Shaft Seals Determination of Recovery FromBending1This standard is issued under the fixed designation D6515; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the
2、year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers a procedure to determine therecovery response of rubber after particular bendingdeform
3、ation, subsequent to aging in selected media at aspecified temperature, and for a specified time period, thusproviding a measure of the relative performance potential ofcompounds used in the manufacture of shaft seals.1.2 The values stated in SI units are to be regarded as thestandard. The values gi
4、ven in parentheses are for informationonly.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulato
5、ry limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D412 Test Methods for Vulcanized Rubber and Thermoplas-tic ElastomersTensionD471 Test Method for Rubber PropertyEffect of LiquidsD1349 Practice for RubberStandard Conditions for Test-ingD3183 Practice for RubberPreparation of Pie
6、ces for TestPurposes from ProductsD4483 Practice for Evaluating Precision for Test MethodStandards in the Rubber and Carbon Black ManufacturingIndustries3. Summary of Test Method3.1 The ends of rectangular specimens of candidate shaftseal compounds are clipped together and the specimens ex-posed und
7、er specified conditions of time and temperature in afluid environment that best simulates anticipated operatingconditions. Upon completion of the exposure, the clamps areremoved and the specimen are allowed to recover frombending. After a specified period of time, the distance betweenends of the spe
8、cimens is measured and the amount of recoverycalculated.4. Significance and Use4.1 Among the factors affecting shaft seal life are the abilityto retain elasticity and compensate for shaft eccentricity, abilityto recover from bending, and resistance to wear and theswelling effects of contact fluids.
9、In-service testing of candi-date materials is time consuming and therefore costly. Mea-surement of recovery from bending after exposure in fluids atelevated temperatures provides a means of quickly assessingthe materials potential and acceptability for use. Comparativerecovery data may then be scree
10、ned and optimum performingcompounds selected for further improvement or seal fabrica-tion. It has been found that good to excellent correlation existsbetween a materials ability to recover from bending andsealing effectiveness.4.2 This method is designed to measure the recovery ofdifferent rubber co
11、mpounds after aging in any liquid medium,including hydraulic oils and water. This method can also beused to test rubber compounds after aging in air. Test liquidsshould be chosen based on the intended end use.5. Apparatus5.1 Glass Test Tubes, 300 by 38 mm (12 by 112 in.)5.2 Specimen Hangers.5.3 Bind
12、er Clips.5.4 Aluminum Block Heater.5.5 Aluminum Plate, 300 by 400 by 2.3 mm (12 by 16 by0.09 in.) with surface roughness, Ra = 0.40.5 m (16 to 20in).5.6 Tweezers.5.7 Oven.5.8 Ruler, graduated in 0.5 mm (0.02 in.).1This test method is under the jurisdiction of ASTM Committee D11 on Rubberand is the d
13、irect responsibility of Subcommittee D11.37 on Coated Fabrics, RubberThreads and Seals.Current edition approved July 1, 2016. Published August 2016. Originallyapproved in 2000. Last previous edition approved in 2010 as D6515 00 (2010).DOI: 10.1520/D6515-00R16.2For referenced ASTM standards, visit th
14、e ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. U
15、nited States16. Test Temperatures6.1 Unless otherwise specified, the standard temperature fortesting shall be 23 6 2C (73.4 6 3.6F). Specimens shall beconditioned for at least 3 h when the test temperature is 23C(73.4F). If the material is affected by moisture, maintain therelative humidity at 50 6
16、5 % and condition the specimens forat least 24 h prior to testing. When testing at any othertemperature is required, use one of the temperatures listed inPractice D1349.7. Test Specimen7.1 Test specimens shall be cut from test sheets with athickness of 2.0 6 0.2 mm (0.080 6 0.05 in.) of eachcompound
17、 to be evaluated, prepared according to the proce-dure detailed in Practice D3183.Test sheets shall be vulcanizedaccording to the same conditions of time and temperature aswould be used for molding the sheets for testing physicalproperties in tension (see Test Method D412).7.2 After the test sheets
18、have been conditioned for at least16 h at 23C (73.4F), prepare three 100 6 0.5 by 10 6 0.05by 2.0 6 0.2 mm (3.937 6 0.02 by 0.393 6 0.002 by 0.080 60.008 in.) specimens for each material to be evaluated. Speci-mens shall be cut parallel to the mill grain direction.8. Procedure8.1 Mark each of three
19、specimens of one compound type 56 0.5 mm (0.2 6 0.02 in.) from each end. Bring the ends of aspecimen together and place a piece of aluminum foil 10 by 15mm (0.395 by 0.590 in.) between them to prevent sticking.Insert the specimen in a binder clip to a depth of 5 mm (0.2 in.)in the lowest position so
20、 that the edge of it is even with the endof the clip. This will avoid deforming the specimen whencutting. (see Figs. 1-3).8.2 Place each group of three specimens on the hangershown in Fig. 4 and insert the assembly in a 300 38-mm testtube, as in Fig. 5. Do not allow specimens to make contact.8.3 Add
21、 225 6 5 cm of test fluid to each test tube, insert acork stopper, and attach an identifying label.8.4 Place the test tubes in an oven block set at the desiredtest temperature, and age for the specified time as detailed inTest Method D471, for suggested durations of 168, 336, and504 h. Verify the oi
22、l temperature periodically during exposure.8.5 When the specified aging period is completed:8.5.1 Remove the specimens, leaving them still in theclamps for 15 6 1 s to allow dripping of excess oil.8.5.2 Place the specimens on their edge, as shown in Fig. 1,on the aluminum plate, with edge surfaces p
23、arallel to thesurface of the plate. DO NOT touch the rubber surface. Nomore than nine specimens (three compounds) shall be placedon an aluminum plate, as shown in Fig. 6.8.5.3 In sequence, cut each group of three specimens fromthe clamps with a razor blade, preferably at a distance of about1.0 to 1.
24、5 mm (0.04 to 0.06 in.) from clamp edges and allowthem to relax for 15 6 1 min. If the aluminum foil sticks to thespecimen, do not attempt to remove it, thus preventing speci-men distortion.8.5.4 After the 15 6 1-min relaxation period at roomtemperature is complete, place the aluminum plate containi
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD6515200020164324STANDARDTESTMETHODFORRUBBERSHAFTSEALSDETERMINATIONOFRECOVERYFROMBENDING 测定 橡胶 密封件

链接地址:http://www.mydoc123.com/p-522740.html