ASTM D6502-2010(2015) 9534 Standard Test Method for Measurement of On-line Integrated Samples of Low Level Suspended Solids and Ionic Solids in Process Water by X-Ray Fluorescence .pdf
《ASTM D6502-2010(2015) 9534 Standard Test Method for Measurement of On-line Integrated Samples of Low Level Suspended Solids and Ionic Solids in Process Water by X-Ray Fluorescence .pdf》由会员分享,可在线阅读,更多相关《ASTM D6502-2010(2015) 9534 Standard Test Method for Measurement of On-line Integrated Samples of Low Level Suspended Solids and Ionic Solids in Process Water by X-Ray Fluorescence .pdf(6页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D6502 10 (Reapproved 2015)Standard Test Method forMeasurement of On-line Integrated Samples of Low LevelSuspended Solids and Ionic Solids in Process Water byX-Ray Fluorescence (XRF)1This standard is issued under the fixed designation D6502; the number immediately following the designati
2、on indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the operati
3、on, calibration, anddata interpretation for an on-line corrosion product (metals)monitoring system. The monitoring system is based on x-rayfluorescence (XRF) analysis of metals contained on membranefilters (for suspended solids) or resin membranes (for ionicsolids). Since the XRF detector is sensiti
4、ve to a range ofemission energy, this test method is applicable to simultaneousmonitoring of the concentration levels of several metalsincluding titanium, vanadium, chromium, manganese, iron,cobalt, nickel, copper, zinc, mercury, lead, and others in aflowing sample. A detection limit below 1 ppb can
5、 be achievedfor most metals.1.2 This test method includes a description of the equipmentcomprising the on-line metals monitoring system, as well as,operational procedures and system specifications.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are incl
6、uded in thisstandard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior t
7、o use.2. Referenced Documents2.1 ASTM Standards:2D1066 Practice for Sampling SteamD1129 Terminology Relating to WaterD2777 Practice for Determination of Precision and Bias ofApplicable Test Methods of Committee D19 on WaterD3370 Practices for Sampling Water from Closed ConduitsD3864 Guide for On-Lin
8、e Monitoring Systems for WaterAnalysisD4453 Practice for Handling of High Purity Water SamplesD5540 Practice for Flow Control and Temperature Controlfor On-Line Water Sampling and AnalysisD6301 Practice for Collection of On-Line CompositeSamples of Suspended Solids and Ionic Solids in ProcessWater3.
9、 Terminology3.1 Definitions:3.1.1 For definitions of other terms used in this standard,refer to Terminology D1129 and Guide D3864.3.2 Definitions of Terms Specific to This Standard:3.2.1 emission intensity, nthe measure of the amplitude offluorescence emitted by a sample element.3.2.1.1 DiscussionTh
10、is measurement is correlated with acalibration curve for quantitative analysis. The emission inten-sity generally is given in units of counts per second (c/s).3.2.2 excitation source, nthe component of the XRFspectrometer, providing the high-energy radiation used toexcite the elemental constituents
11、of a sample, leading to thesubsequent measured fluorescence.3.2.2.1 DiscussionThe excitation source may be an elec-tronic x-ray generating tube or one of a variety of radioisotopesemitting an x-ray line of a suitable energy for the analysis athand.3.2.3 integrated sample, nthe type of sample collect
12、ed byconcentrating the metal constituents of a water sample using afilter or an ion-exchange resin.3.2.3.1 DiscussionThese samples typically are collectedover long time periods (up to several days). The result ofanalysis of the collection medium yields a single measurement,which, when divided by the
13、 total sample volume, is interpretedas the average metals concentration during the time of collec-tion.1This test method is under the jurisdiction of ASTM Committee D19 on Waterand is the direct responsibility of Subcommittee D19.03 on Sampling Water andWater-Formed Deposits, Analysis of Water for P
14、ower Generation and Process Use,On-Line Water Analysis, and Surveillance of Water.Current edition approved April 1, 2015. Published April 2015. Originallyapproved in 1999. Last previous edition approved in 2010 as D6502 10. DOI:10.1520/D6502-10R15.2For referenced ASTM standards, visit the ASTM websi
15、te, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States
16、13.2.4 ionic solids, nmatter that will pass through a 0.45m filter and may be captured on anion or cation ion-exchangemembranes, or both.3.2.5 suspended solids, nmatter that is removed by a 0.45m filter.3.2.6 x-ray fluorescence (XRF) spectroscopy, nan analyti-cal technique in which sample elements a
17、re irradiated by ahigh-energy source to induce a transition from the ground stateto an excited state.3.2.6.1 DiscussionThe excitation source is in the 5 to 50KeV x-ray range. The resulting transition elevates an inner-shell electron to one of several outer shells. The excited state isunstable and th
18、ose excited elements will spontaneously dropback to their ground state with a concurrent emission offluorescent radiation. The energy (or wavelength) of thefluorescence is unique for each element, so the position of theemission lines on the energy scale serves to identify theelement(s). Then, the in
19、tensity of an emission peak may beused, with proper calibration methods, to determine the con-centration of an element in the sample.3.3 Acronyms:3.3.1 EDXRF, nenergy-dispersive x-ray fluorescence3.3.2 WDXRF, nwavelength-dispersive x-ray fluorescence4. Summary of Test Method4.1 The concentrations of
20、 particulate, or dissolved metals,or both, in water streams are determined through accumulationon appropriate collection media (filters or ion exchange mate-rials) and detection by x-ray fluorescence spectroscopy, pro-viding real time determination of iron and other metals foundin water streams. The
21、 water sample delivered into the moni-toring system passes through a flow sensor, and then, to a flowcell assembly containing a membrane or resin filter, dependingon the application of interest. For an application where onlydissolved metals are to be analyzed, the sample needs to befiltered upstream
22、 of the sample chamber to prevent particulatecontamination of the resin membrane surface. Asample bypassvalve is used for flow control through the sample chamber. Twosample chambers in sequence can be used to determine bothparticulate and dissolved components of the metal(s) of inter-est. X-ray fluo
23、rescence is used to determine the concentrationof the captured material. XRF analysis gives a measure of totalelemental concentration independent of the oxidation state ormolecular configuration of the element. Elements with atomicnumbers 13 through 92 can be detected.4.2 The filter chamber is essen
24、tially a variation of thetraditional corrosion product sampler used to collect integratedsamples (see Practice D6301). The main difference in thedesign of the flow cell in the on-line monitor is that the sampleenters the filter chamber in a way that allows an x-ray probe tobe positioned in close pro
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD6502201020159534STANDARDTESTMETHODFORMEASUREMENTOFONLINEINTEGRATEDSAMPLESOFLOWLEVELSUSPENDEDSOLIDSANDIONICSOLIDSINPROCESSWATERBYXRAYFLUORESCENCEPDF

链接地址:http://www.mydoc123.com/p-522702.html