ASTM B931-2003 Standard Test Method for Metallographically Estimating the Observed Case Depth of Ferrous Powder Metallurgy (P M) Parts《从金相学上评估铁粉冶金(P M)部件的观测表面硬化深度的标准试验方法》.pdf
《ASTM B931-2003 Standard Test Method for Metallographically Estimating the Observed Case Depth of Ferrous Powder Metallurgy (P M) Parts《从金相学上评估铁粉冶金(P M)部件的观测表面硬化深度的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM B931-2003 Standard Test Method for Metallographically Estimating the Observed Case Depth of Ferrous Powder Metallurgy (P M) Parts《从金相学上评估铁粉冶金(P M)部件的观测表面硬化深度的标准试验方法》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: B 931 03Standard Test Method forMetallographically Estimating the Observed Case Depth ofFerrous Powder Metallurgy (P/M) Parts1This standard is issued under the fixed designation B 931; the number immediately following the designation indicates the year oforiginal adoption or, in the cas
2、e of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 A metallographic method is described for estimating theobserved case depth of ferrous powd
3、er metallurgy (P/M) parts.This method may be used for all types of hardened cases wherethere is a discernible difference between the microstructure ofthe hardened surface and that of the interior of the part.1.2 This standard does not purport to address all of thesafety concerns, if any, associated
4、with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:B 243 Terminology of Powder Metallurgy2E 407 Practice for Microet
5、ching Metals and Alloys33. Terminology3.1 DefinitionsDefinitions of powder metallurgy (P/M)terms can be found in Terminology B 243. Additional descrip-tive information is available in the Related Material section ofVol 02.05 of the Annual Book of ASTM Standards.3.2 The metallographically estimated o
6、bserved case depth isdefined as the distance from the surface of the part to the pointwhere, at a magnification of 100X, there is a discernibledifference in the microstucture of the material.4. Summary of Test Method4.1 The powder metallurgy part is sectioned and the surfaceprepared for metallograph
7、ic evaluation. The metallographicspecimen is etched and the distance is measured from thesurface of the part to the point at which a discernible differencein the microstructure of the material is observed.5. Significance and Use5.1 The engineering function of many P/M parts mayrequire an exterior po
8、rtion of the part to have a hardened layer.Where case hardening produces a distinct transition in themicrostructure, metallographic estimation of the observed casedepth may be used to check the depth to which the surface hasbeen hardened.6. Apparatus6.1 Equipment for the metallographic preparation o
9、f testspecimenssee Appendix X1.6.2 Metallographic Microscope, permitting observation andmeasurement at a magnification of 1003.7. Reagents and Materials7.1 Etchants such as 2 to 5 % nital, nital/picral combina-tions, or other suitable etchants. For more information onsuitable etchants refer to Pract
10、ice E 407.8. Test Specimens8.1 Cut a test specimen from the P/M part, perpendicular tothe hardened surface at a specified location, being careful toavoid any cutting or grinding procedure that would affect theoriginal microstructure.8.2 Mounting of the test specimen is recommended forconvenience in
11、surface preparation and edge retention. Edgeretention is important for proper measurement of the observedcase depth.9. Procedure9.1 Grind and polish the test specimen using methods suchas those summarized in Appendix X1.9.2 Etch the specimen with etchants such as 2 to 5 % nitalor nital/picral combin
12、ations.9.2.1 Observed Case Depth:9.2.1.1 Examine the surface region of the part at a magni-fication of 1003.9.2.1.2 Measure the distance from the surface of the part tothe point where there is a discernible difference in the micro-structure of the material.NOTE 1The nature and amount of intermediate
13、 transformation prod-ucts will depend on the material being heat treated, its density, and thetype of surface hardening treatment being used. The sharpness of thechange in the microstructure at the point of transition will therefore vary.The microstructure expected at this transition point should be
14、 agreedbetween the producer and user of the part. Magnifications higher than1003 may be used to check the microstructure of the part in the region of1This test method is under the jurisdiction of ASTM Committee B09 on MetalPowders and Metal Powder Products and is the direct responsibility of Subcom-
15、mittee B09.05 on Structural Parts.Current edition approved Oct. 1, 2003. Published October 2003.2Annual Book of ASTM Standards, Vol 02.05.3Annual Book of ASTM Standards, Vol 03.01.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.the t
16、ransition zone. However, the metallographic estimate of the observedcase depth shall be made at a magnification of 1003.10. Report10.1 Report the following information:10.1.1 The type of material and case measured,10.1.2 The type of etchant used,10.1.3 The location of the measurement, and10.1.4 The
17、metallographically estimated observed casedepth to the nearest 0.1 mm.11. Precision and Bias11.1 The precision that can be expected through the use ofthis test method is currently under review by SubcommitteeB09.05 on Structural Parts.12. Keywords12.1 case depth; observed case depth; P/M; powdermeta
18、llurgyAPPENDIX(Nonmandatory Information)X1. SAMPLE PREPARATIONX1.1 The methods described in this appendix are provenpractices for metallographic preparation of porous P/M mate-rials. It is recognized that other procedures or materials used inpreparation of a sample may be equally as good and can beu
19、sed on the basis of availability and preference of individuallaboratories.X1.2 Method 1:X1.2.1 The porous samples should be free of oil or coolant.Remove any oil using Soxhlet extraction. Mount and vacuumimpregnate samples with epoxy resin, to fill porosity and toprevent the pickup of etchants. Use
20、a sample cup or holder toform the mount. Pour epoxy resin over the sample in the cup toa total depth of about 0.75 in (19 mm). Evacuate the cup tominus 26 in. of mercury (88 kPa) and hold at that pressure for10 min. Then restore ambient air pressure to force the resin intomost of the sample. Cure at
21、 room temperature or at 122F(50C).X1.2.2 Grind on 240, 400, and 600 grit wet SiC paper, on arotating wheel, and change the polishing direction 90 aftereach paper. Etch samples for 1 min in their normal etchant, forexample, 2 % nital, to begin to open the porosity. Roughpolishing for 8 to 12 min tota
22、l on 1 m alumina (Al2O3), longnapped cloth (for example Struers felt cloth), at 250 rpm, and300 gf load, using an automated polisher opens smeared pores.This rough polishing opens and exaggerates the pores. Toreturn the pores to their true area fraction, polish for 4 min at125 rpm on a shorter nap c
23、loth (for example Struers MOLcloth), with 1 m diamond paste. Final polishing is done for 20to 30 s using 0.05 m deagglomerated alumina, and a longnapped cloth (for example, Buehler Microcloth), at 125 rpm,and 75 gf load, on an automated polisher. Polishing may alsobe done by hand for the times indic
24、ated. The first twopolishings require moderate pressure and the final polishrequires light pressure.X1.2.3 The metallographic structure should be free ofsmeared porosity. Generally at 800 to 10003, the edge of asmeared over pore will appear as a thin gray line outlining oneside of the pore, and occa
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMB9312003STANDARDTESTMETHODFORMETALLOGRAPHICALLYESTIMATINGTHEOBSERVEDCASEDEPTHOFFERROUSPOWDERMETALLURGYPMPARTS

链接地址:http://www.mydoc123.com/p-462826.html