ASTM B504-1990(2007) Standard Test Method for Measurement of Thickness of Metallic Coatings by the Coulometric Method《用库仑法测量金属镀层厚度的试验方法》.pdf
《ASTM B504-1990(2007) Standard Test Method for Measurement of Thickness of Metallic Coatings by the Coulometric Method《用库仑法测量金属镀层厚度的试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM B504-1990(2007) Standard Test Method for Measurement of Thickness of Metallic Coatings by the Coulometric Method《用库仑法测量金属镀层厚度的试验方法》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: B 504 90 (Reapproved 2007)Endorsed by AmericanElectroplaters SocietyEndorsed by NationalAssociation of Metal FinishersStandard Test Method forMeasurement of Thickness of Metallic Coatings by theCoulometric Method1This standard is issued under the fixed designation B 504; the number imme
2、diately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.This standard h
3、as been approved for use by agencies of the Department of Defense.1. Scope1.1 This test method covers the determination of the thick-ness of metallic coatings by the coulometric method, alsoknown as the anodic solution or electrochemical strippingmethod.1.2 This standard does not purport to address
4、all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ISO Standard:ISO 2177 Metallic Coa
5、tingsMeasurement of CoatingThicknessCoulometric Method by Anodic Dissolution23. Summary of Test Method3.1 The thickness of the coating is determined by measuringthe quantity of electricity (coulombs) required to dissolve thecoating anodically from a known and accurately defined area.3.2 As commonly
6、practiced, the method employs a smallmetal cell which is filled with an appropriate electrolyte. Thetest specimen serves as the bottom of the cell and an insulatinggasket between the cell and the specimen defines the test area(about 0.1 cm2). With the test specimen as anode and the cellas cathode, a
7、 constant direct current is passed through the celluntil the coating has dissolved, at which time a sudden changein voltage occurs.3.3 The thickness of the coating may be calculated from thequantity of electricity used (current multiplied by time), thearea, the electrochemical equivalent of the coat
8、ing metal, theanodic-current efficiency, and the density of the coating.Alternatively, the equipment may be calibrated against stan-dards with known coating thicknesses.3.4 Commercial instruments using this principle are avail-able. The method is rapid and versatile, but destructive to thecoating. I
9、n general, its range is considered to be between 0.75and 50 m. Chromium, gold, tin, and other coatings can bemeasured down to 0.075 m.4. Significance and Use4.1 Measurement of the thickness of a coating is essential toassessing its utility and cost.4.2 The coulometric method destroys the coating ove
10、r avery small (about 0.1 cm2) test area. Therefore its use is limitedto applications where a bare spot at the test area is acceptableor the test piece may be destroyed.5. Factors Affecting the Accuracy of the Method5.1 Composition of ElectrolytesElectrolytes used for cou-lometric thickness measureme
11、nts must permit the coatingmetal to dissolve at a constant anodic-current efficiency (pref-erably 100 %); they must have a negligible spontaneouschemical effect on the coating metal and must so differentiateelectrochemically between the coating and the substrate that asuitably sharp and large voltag
12、e change occurs at the end pointof the test.5.1.1 Electrolytes furnished with commercial instrumentsmay be presumed to meet these requirements; others must beevaluated before use by testing standards having knownthicknesses. Appendix X1 lists some electrolytes and coating-substrate combinations that
13、 have been used with some instru-ments.5.2 Current VariationFor coulometric instruments em-ploying the constant-current technique, variation of the currentduring a test will result in errors. For instruments using acurrent-time integrator, variation of the current during a testwill not result in err
14、or unless the current change is such as todisplace the anodic current density beyond the range ofconstant or 100 % anodic-current efficiency.5.3 Area VariationThe accuracy of the thickness measure-ment will not be better than the accuracy with which the testarea is defined or known. Typically, this
15、test area is defined bya flexible, insulating gasket. Area variation is usually mini-mized by using as large an area as practical and by using a1This test method is under the jurisdiction ofASTM Committee B08 on Metallicand Inorganic Coatings and is the direct responsibility of Subcommittee B08.10 o
16、nTest Methods.Current edition approved March 1, 2007. Published March 2007. Originallyapproved in 1970. Last previous edition approved in 2002 as B 504 90 (2002).2Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.1Copyright
17、ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.constant pressure device. If excessive pressure is applied tosuch a gasket, the test area may be altered undesirably.5.4 AgitationIn most, but not all, coulometric thicknessmeasurements, a relativ
18、ely high anodic-current density isemployed to shorten the test time. It is then necessary to agitatethe electrolyte to maintain a constant anodic-current efficiency.Where agitation is required, insufficient agitation may result inpolarization of the specimen, thereby causing a premature andfalse end
19、point.5.5 Alloying Between Coatings and Metallic SubstratesThe measurement of a coating thickness by the coulometricmethod implicitly assumes that a sharply defined interfaceexists between the coating and the substrate. If an alloy layerexists between the coating and the substrate as, for example, i
20、nthe case of coatings applied by hot dipping, the coulometricend-point may occur at some point within the alloy layer, thusgiving a high value of the thickness of the unalloyed coating.5.6 Purity of CoatingImpurities or additives that code-posit with the coating may change the effective electrochemi
21、calequivalent of the coating and also change the anodic currentefficiency.5.6.1 Alloy CoatingVariations in the composition of alloycoatings will change the effective electrochemical equivalentof the coating.5.7 Cleanliness of Test SurfaceThe surface to be testedmust be clean. Oil, grease, and organi
22、c coatings such as lacquermust be removed with suitable solvents. Oxides, conversioncoatings, and corrosion products are preferably removed bycarefully burnishing the test surface with a clean, soft pencileraser. Tin and nickel surfaces, in particular, should be soburnished prior to testing to remov
23、e passive oxide films.5.8 Density of CoatingThe coulometric method intrinsi-cally measures coating mass per unit area, the equivalent linearthickness being a function of the density of the coating. If thedensity of the coating tested is different from the value of thedensity used for the calibration
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMB50419902007STANDARDTESTMETHODFORMEASUREMENTOFTHICKNESSOFMETALLICCOATINGSBYTHECOULOMETRICMETHOD 库仑

链接地址:http://www.mydoc123.com/p-461418.html