ASHRAE FUNDAMENTALS SI CH 20-2017 Space Air Diffusion.pdf
《ASHRAE FUNDAMENTALS SI CH 20-2017 Space Air Diffusion.pdf》由会员分享,可在线阅读,更多相关《ASHRAE FUNDAMENTALS SI CH 20-2017 Space Air Diffusion.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、20.1CHAPTER 20SPACE AIR DIFFUSIONIndoor Air Quality and Sustainability. 20.2Terminology 20.2Principles of Jet Behavior. 20.3Symbols . 20.8OOM air distribution systems are intended to provide thermalR comfort and ventilation for space occupants and processes.Although air terminals (inlets and outlets
2、), terminal units, fan-coilunits, local ducts, and rooms themselves may affect room air diffu-sion, this chapter addresses only air inlets and outlets and their directeffect on occupant comfort. This chapter is intended to presentHVAC designers the fundamental characteristics of air distributiondevi
3、ces. For information on naturally ventilated spaces, see Chapter16. For a discussion of various air distribution strategies, tools, andguidelines for design and application, see Chapter 57 in the 2015ASHRAE HandbookHVAC Applications. Chapter 20 in the 2016ASHRAE HandbookHVAC Systems and Equipment de
4、scribes thecharacteristics of various air inlets, outlets, fan-coil units, chilledbeams, air curtain units, and terminal units, as well as selection toolsand guidelines.Room air diffusion methods can be classified as one of the fol-lowing as shown in Figure 1: Mixed systems produce little or no ther
5、mal stratification of airwithin the space. Overhead air distribution is an example of thistype of system.Fully (thermally) stratified systems produce little or no mixingof air within the occupied space. Thermal displacement ventila-tion is an example of this type of system.Partially mixed systems pr
6、ovide some mixing within the occupiedand/or process space while creating stratified conditions in the vol-ume above. Most underfloor air distribution and task/ambient con-ditioning designs are examples of this type of system.Local temperature and carbon dioxide (CO2) concentration havesimilar strati
7、fication profiles.Air distribution systems, such as thermal displacement ventila-tion (TDV) and underfloor air distribution (UFAD), that deliver airin cooling mode at or near floor level and return air at or near ceil-ing level produce varying amounts of room air stratification. Forfloor-level suppl
8、y, thermal plumes that develop over heat sourcesin the room play a major role in driving overall floor-to-ceiling airmotion. The amount of stratification in the room is primarily deter-mined by the balance between total room airflow and heat load. Inpractice, the actual temperature and concentration
9、 profile dependson the combined effects of various factors, but is largely driven bythe characteristics of the room supply airflow and heat load config-uration.For room supply airflow, the major factors areTotal room supply airflow quantityRoom supply air temperatureDiffuser typeDiffuser throw heigh
10、t (or outlet velocity); this is associated withthe amount of mixing provided by a floor diffuser (or room con-ditions near a low-sidewall TDV diffuser)For room heat loads, the major factors areMagnitude and number of loads in spaceLoad type (point or distributed source)Elevation of load (e.g., overh
11、ead lighting, person standing onfloor, floor-to-ceiling glazing)Radiative/convective splitWhether pollutants are associated with heat sourcesThe preparation of this chapter is assigned to TC 5.3, Room Air Distribu-tion.Fig. 1 Classification of Air Diffusion Methods20.2 2017 ASHRAE HandbookFundamenta
12、ls (SI)1. INDOOR AIR QUALITY AND SUSTAINABILITYAir diffusion methods affect not only indoor air quality (IAQ)and thermal comfort, but also energy consumption over the build-ings life. Choices made early in the design process are important.Programs such as U.S. Green Building Councils (USGBC 2013)Lea
13、dership in Energy and Environmental Design (LEED) v4 rat-ing system, which was originally created in response to indoor airquality concerns, now include prerequisites and credits for increas-ing ventilation rates and improving indoor environmental quality.These program requirements are sometimes ach
14、ievable by follow-ing good room air diffusion design principles, methods, and stan-dards (see Chapter 57 of the 2015 ASHRAE HandbookHVACApplications).ANSI/ASHRAE Standard 62.1 provides a table of typical valuesto help predict zone air distribution effectiveness. For example,well-designed ceiling-bas
15、ed air distribution systems produce near-perfect air mixing in cooling mode, and yield an air distributioneffectiveness of 1.0. Displacement ventilation and underfloor airdistribution (UFAD) systems have the potential for values greaterthan 1.0. More information on ceiling- and wall-mounted air inle
16、tsand outlets can be found in Rock and Zhu (2002). Displacementsystem performance is described in Chen and Glicksman (2003).ASHRAEs (2013) UFAD Design Guide discusses UFAD in detail.More information on ANSI/ASHRAE Standard 62.1 is available inits users manual (ASHRAE 2010).2. TERMINOLOGYAspect ratio
17、. Ratio of length to width of opening or core of agrille.Attached jet. A supply air jet drawn to a surface, parallel to thedirection of airflow and caused by the Coanda effect.Axial jet. A supply air jet with a conical discharge profile.Centerline velocity. Maximum velocity of an air jet at anygiven
18、 cross section perpendicular to the direction of airflow.Coanda effect. Effect of a moving jet attaching to a parallelsurface because of negative pressure developed between jet andsurface.Coefficient of discharge. Ratio of area at vena contracta to freearea of opening.Core area. Area of a register,
19、grille, or linear slot diffuser per-taining to the inside of the frame or border.Diffusion. Distribution of air into a space.Distribution. Moving air to or in a space by an outlet discharg-ing supply air.Draft. Current of air, when referring to localized effect (gener-ally, the unwanted local coolin
20、g of the body caused by air move-ment) caused by one or more factors of high air velocity, lowambient temperature, or direction of airflow whereby more heat iswithdrawn from a persons skin than is normally dissipated.Drop. Vertical distance that the lower edge of a horizontallyprojected airstream de
21、scends between the outlet and the end of itsthrow.Effective area. Net area of an outlet or inlet device throughwhich air can pass; equal to the free area times the coefficient ofdischarge.Entrainment. Air drawn into an air jet because of the pressuredifferential caused by the airstream discharged fr
22、om the outlet.Entrainment ratio. Volumetric flow rate of total air (supply airplus entrained air) at a given distance from an outlet divided by thevolumetric flow rate of supply air.Free area. Total minimum area of openings in an air outlet orinlet through which air can pass.Free jet. An air jet not
23、 obstructed or affected by walls, ceiling,or other surfaces.Induction. Movement of space air into an air device.Induction ratio. Volumetric flow rate of induced air divided byvolumetric flow rate of primary air.Inlet. A device that allows air to exit the zone (e.g., grilles, reg-isters, diffusers)Is
24、othermal jet. An air jet in which supply air temperatureequals surrounding room air temperature.Linear jet. A supply air jet with a relatively high aspect ratio.Neck area. Nominal area of duct connection to air outlet orinlet.Nonisothermal jet. An air jet in which supply air temperaturedoes not equa
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAEFUNDAMENTALSSICH202017SPACEAIRDIFFUSIONPDF

链接地址:http://www.mydoc123.com/p-454802.html