ANSI ASTM F1588-1996 Standard Test Method for Constant Tensile Load Joint Test (CTLJT)《恒定拉伸载荷连接试验方法》.pdf
《ANSI ASTM F1588-1996 Standard Test Method for Constant Tensile Load Joint Test (CTLJT)《恒定拉伸载荷连接试验方法》.pdf》由会员分享,可在线阅读,更多相关《ANSI ASTM F1588-1996 Standard Test Method for Constant Tensile Load Joint Test (CTLJT)《恒定拉伸载荷连接试验方法》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F1588 96 (Reapproved 2015)Standard Test Method forConstant Tensile Load Joint Test (CTLJT)1This standard is issued under the fixed designation F1588; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last rev
2、ision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 The constant tensile load joint test (CTLJT) is designedto demonstrate that a joint in a plastic piping system is resistantto
3、the effects of long-term creep.1.1.1 The joint is subjected to an internal pressure at leastequal to its operating pressure and a sustained axial tensile loadfor a specified time period, usually 1000 h. The joint shall notleak, nor may the pipe completely pull out for the test duration.The total axi
4、al stress is set by the referencing document.1.1.2 Some typical conditions for testing of joints on poly-ethylene pipe are described in Appendix X1.1.2 This test is usually performed at 73F (22.8C).1.3 The CTLJT was developed to demonstrate the long-termresistance to pullout of mechanical joints on
5、polyethylene gaspipe. The CTLJT has also been successfully applied to theevaluation of other components of plastic piping systems.These applications are discussed in Appendix X1.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalc
6、onversions to SI units that are provided for information onlyand are not considered standard.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health prac
7、tices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D638 Test Method for Tensile Properties of PlasticsD1600 Terminology forAbbreviated Terms Relating to Plas-ticsD2122 Test Method for Determining Dimensions of Ther-moplastic Pipe
8、and FittingsD2513 Specification for Polyethylene (PE) Gas PressurePipe, Tubing, and FittingsF412 Terminology Relating to Plastic Piping Systems2.2 ANSI Standard:3B31.8 Gas Transmission and Distribution Piping Systems2.3 Code of Federal Regulations:4OPS Part 192, Title 493. Terminology3.1 Definitions
9、:3.1.1 GeneralDefinitions are in accordance with TestMethod D638 and Terminology F412, unless otherwise speci-fied. Abbreviations are in accordance with TerminologyD1600.3.1.2 The gas industry terminology used in this test methodis in accordance with the definitions given in ANSI B31.8 orOPS Part 19
10、2, Title 49, unless otherwise indicated.3.2 Definitions of Terms Specific to This Standard:3.2.1 mechanical joint, Category 1a mechanical jointdesign that provides a seal plus a resistance to force on the pipeend, equal to or greater than that which will cause a permanentdeformation of the pipe or t
11、ubing. (D2513)3.2.2 mechanical joint, Category 3a mechanical jointdesign that provides a seal plus a pipe restraint rating equiva-lent to the anticipated thermal stresses occurring in a pipeline.This category has a manufacturers pipe-end restraint thatallows slippage at less than the value required
12、to yield the pipe.(D2513)3.2.3 piperefers to both pipe and tubing.4. Summary of Test Method4.1 A joint is subjected to a sustained axial load for aspecified period of time (usually 1000 h). The test duration andthe actual test conditions (axial stress, internal pressure, testduration, and test tempe
13、rature) are either specified by areferencing document or, for new or unique applications,1This test method is under the jurisdiction of ASTM Committee F17 on PlasticPiping Systems and is the direct responsibility of Subcommittee F17.40 on TestMethods.Current edition approved Aug. 1, 2015. Published
14、November 2015. Originallyapproved in 1995. Last previous edition approved in 2011 as F158896(2011). DOI:10.1520/F1588-96R15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, r
15、efer to the standards Document Summary page onthe ASTM website.3Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.4Available from U.S. Government Publishing Office, 732 N. Capitol St., NW,Washington, DC 20401-0001, http:/www
16、.gpo.gov.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1agreed upon between the user and the manufacturer. X1.2contains a background discussion of axial stress values andaxial load determination.4.2 The joint is made to plastic pipe
17、of the type, grade, size,and dimension ratio to be used in the final application. Theaxial tensile stress should be as high as possible, but shall belower than the stress at which the plastic material continues tostretch and finally yields (the long-term yield strength) (seeNote 1).NOTE 1During the
18、first hours of a test, the pipe elongates measurably.Elongation continues for the duration of the test at a decaying rate.4.3 A joint passes this test if it does not leak and does notpull out or allow slippage in excess of the manufacturersspecified design slippage during the test duration.4.4 If a
19、pipe in the test assembly yields before the specifiedminimum test time is attained, the total stress is above thelong-term yield strength of that pipe and the test shall beperformed again at a stress level calculated to be below thelong-term yield strength of the pipe.5. Significance and Use5.1 This
20、 test method was designed to be used to validate thelong-term resistance to pullout of joints designed for use inplastic natural gas piping systems.5.2 This test method is used in addition to the short-termtests required by OPS Part 192.283b, Title 49. Informalversions of this test method are used b
21、y manufacturers andutilities to demonstrate that a joint is resistant to the effects oflong-term creep and meets the requirements for classificationas a Category 1 or a Category 3 joint in accordance withSpecification D2513.5.3 This test method may also be applicable for the deter-mination of the ef
22、fects of a sustained axial load on joints orother components of plastic piping systems designed for otherapplications. Test parameters and the internal pressurizingfluid, if any, should be listed in the referencing document.5.4 Documents that reference this test method for productsother than joints
23、shall specify test conditions and performancerequirements. In general, such products pass this test if theymaintain their structural integrity, do not leak, and perform tospecification during and after the test.6. Apparatus6.1 Loading Methods:6.1.1 Any loading method that maintains the correct, in-l
24、inetensile load on the joint (within 62 %) for the test duration isacceptable. Loading methods successfully employed for allsize loads include lever arms, hydraulic cylinders, and aircylinders.6.1.2 Dead weight (a pile of scrap steel or iron) has workedwell for loads up to 1 ton (907 kg) (see Note 2
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIASTMF15881996STANDARDTESTMETHODFORCONSTANTTENSILELOADJOINTTESTCTLJT 恒定 拉伸 载荷 连接 试验 方法 PDF

链接地址:http://www.mydoc123.com/p-432865.html