T. Senthil (MIT)Subir SachdevMatthias Vojta (Karlsruhe).ppt
《T. Senthil (MIT)Subir SachdevMatthias Vojta (Karlsruhe).ppt》由会员分享,可在线阅读,更多相关《T. Senthil (MIT)Subir SachdevMatthias Vojta (Karlsruhe).ppt(33页珍藏版)》请在麦多课文档分享上搜索。
1、T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe),Quantum phases and critical points of correlated metals,Transparencies online at http:/pantheon.yale.edu/subir,cond-mat/0209144,Outline Kondo lattice models Doniachs phase diagram and its quantum critical point A new phase: FL* Paramagnetic s
2、tates of quantum antiferromagnets: (A) Bond order, (B) Topological order. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka- Oshikawa flux-piercing arguments Extended phase diagram and its critical points Conclusions,I. Kondo lattice models,I. Doniachs T=0 phase diagram for the Kondo lattice,J
3、K / t,“Heavy” Fermi liquid with moments Kondo screened by conduction electrons. Fermi surface obeys Luttingers theorem.,FL,SDW,Local moments choose some static spin arrangement,Luttingers theorem on a d-dimensional lattice for the FL phase,Let v0 be the volume of the unit cell of the ground state,nT
4、 be the total number density of electrons per volume v0.(need not be an integer),A “large” Fermi surface,Arguments for the Fermi surface volume of the FL phase,Fermi liquid of S=1/2 holes with hard-core repulsion,Arguments for the Fermi surface volume of the FL phase,Alternatively:,Formulate Kondo l
5、attice as the large U limit of the Anderson model,Quantum critical point between SDW and FL phases,Spin fluctuations of renormalized S=1/2 fermionic quasiparticles, (loosely speaking, TK remains finite at the quantum critical point),Gaussian theory of paramagnon fluctuations:,J.A. Hertz, Phys. Rev.
6、B 14, 1165 (1976).,J. Mathon, Proc. R. Soc. London A, 306, 355 (1968); T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974); T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985) G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339 (1985); A.J. Millis, Phys. Rev. B
7、 48, 7183 (1993).,Characteristic paramagnon energy at finite temperature G(0,T) T p with p 1.Arises from non-universal corrections to scaling, generated by term.,Quantum critical point between SDW and FL phases,Critical point not described by strongly-coupled critical theory with universal dynamic r
8、esponse functions dependent on In such a theory, paramagnon scattering amplitude would be determined by kBT alone, and not by value of microscopic paramagnon interaction term.,Additional singular corrections to quasiparticle self energy in d=2,Ar. Abanov and A. V. Chubukov Phys. Rev. Lett. 84, 5608
9、(2000); A. Rosch Phys. Rev. B 64, 174407 (2001).,S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).,(Contrary opinions: P. Coleman, Q. Si),Outline Kondo lattice models Doniachs phase diagram and its quantum critical point A new phase: FL* Paramagnetic states of quantum antiferromagnets: (A) Bon
10、d order, (B) Topological order. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka- Oshikawa flux-piercing arguments Extended phase diagram and its critical points Conclusions,II. A new phase: FL*,Reconsider Doniach phase diagram,II. A new phase: FL*,This phase preserves spin rotation invarianc
11、e, and has a Fermi surface of sharp electron-like quasiparticles. The state has “topological order” and associated neutral excitations. The topological order can be easily detected by the violation of Luttingers theorem. It can only appear in dimensions d 1,Precursors: L. Balents and M. P. A. Fisher
12、 and C. Nayak, Phys. Rev. B 60, 1654, (1999); T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000);S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).,It is more convenient to consider the Kondo-Heiseberg model:,Work in the regime JH JK,Determine the ground state of the q
13、uantum antiferromagnet defined by JH, and then couple to conduction electrons by JK,Ground states of quantum antiferromagnets,Begin with magnetically ordered states, and consider quantum transitions which restore spin rotation invariance,Two classes of ordered states:,(A) Collinear spins,(B) Non-col
14、linear spins,(A) Collinear spins, bond order, and confinement,N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).,(A) Collinear spins, bond order, and confinement,Bond-ordered state,N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).,State of conduction electrons,Perturbation theory in J
15、K is regular and so this state will be stable for finite JK,However, because nf=2 (per unit cell of ground state) nT= nf+ nc= nc(mod 2), and Luttingers theorem is obeyed.,At JK= 0 the conduction electrons form a Fermi surface on their own with volume determined by nc,FL state with bond order,(B) Non
16、-collinear spins, deconfined spinons, Z2 gauge theory, and topological order,Solve constraints by writing:,Other approaches to a Z2 gauge theory: R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991); S. Sachdev and M. Vojta, J. Phys. Soc. Jpn 69, Suppl. B, 1 (2000). X. G. Wen, Phys. Rev. B 44, 26
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- TSENTHILMITSUBIRSACHDEVMATTHIASVOJTAKARLSRUHEPPT

链接地址:http://www.mydoc123.com/p-389590.html