欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    T. Senthil (MIT)Subir SachdevMatthias Vojta (Karlsruhe).ppt

    • 资源ID:389590       资源大小:374.50KB        全文页数:33页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    T. Senthil (MIT)Subir SachdevMatthias Vojta (Karlsruhe).ppt

    1、T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe),Quantum phases and critical points of correlated metals,Transparencies online at http:/pantheon.yale.edu/subir,cond-mat/0209144,Outline Kondo lattice models Doniachs phase diagram and its quantum critical point A new phase: FL* Paramagnetic s

    2、tates of quantum antiferromagnets: (A) Bond order, (B) Topological order. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka- Oshikawa flux-piercing arguments Extended phase diagram and its critical points Conclusions,I. Kondo lattice models,I. Doniachs T=0 phase diagram for the Kondo lattice,J

    3、K / t,“Heavy” Fermi liquid with moments Kondo screened by conduction electrons. Fermi surface obeys Luttingers theorem.,FL,SDW,Local moments choose some static spin arrangement,Luttingers theorem on a d-dimensional lattice for the FL phase,Let v0 be the volume of the unit cell of the ground state,nT

    4、 be the total number density of electrons per volume v0.(need not be an integer),A “large” Fermi surface,Arguments for the Fermi surface volume of the FL phase,Fermi liquid of S=1/2 holes with hard-core repulsion,Arguments for the Fermi surface volume of the FL phase,Alternatively:,Formulate Kondo l

    5、attice as the large U limit of the Anderson model,Quantum critical point between SDW and FL phases,Spin fluctuations of renormalized S=1/2 fermionic quasiparticles, (loosely speaking, TK remains finite at the quantum critical point),Gaussian theory of paramagnon fluctuations:,J.A. Hertz, Phys. Rev.

    6、B 14, 1165 (1976).,J. Mathon, Proc. R. Soc. London A, 306, 355 (1968); T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974); T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985) G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339 (1985); A.J. Millis, Phys. Rev. B

    7、 48, 7183 (1993).,Characteristic paramagnon energy at finite temperature G(0,T) T p with p 1.Arises from non-universal corrections to scaling, generated by term.,Quantum critical point between SDW and FL phases,Critical point not described by strongly-coupled critical theory with universal dynamic r

    8、esponse functions dependent on In such a theory, paramagnon scattering amplitude would be determined by kBT alone, and not by value of microscopic paramagnon interaction term.,Additional singular corrections to quasiparticle self energy in d=2,Ar. Abanov and A. V. Chubukov Phys. Rev. Lett. 84, 5608

    9、(2000); A. Rosch Phys. Rev. B 64, 174407 (2001).,S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).,(Contrary opinions: P. Coleman, Q. Si),Outline Kondo lattice models Doniachs phase diagram and its quantum critical point A new phase: FL* Paramagnetic states of quantum antiferromagnets: (A) Bon

    10、d order, (B) Topological order. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka- Oshikawa flux-piercing arguments Extended phase diagram and its critical points Conclusions,II. A new phase: FL*,Reconsider Doniach phase diagram,II. A new phase: FL*,This phase preserves spin rotation invarianc

    11、e, and has a Fermi surface of sharp electron-like quasiparticles. The state has “topological order” and associated neutral excitations. The topological order can be easily detected by the violation of Luttingers theorem. It can only appear in dimensions d 1,Precursors: L. Balents and M. P. A. Fisher

    12、 and C. Nayak, Phys. Rev. B 60, 1654, (1999); T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000);S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).,It is more convenient to consider the Kondo-Heiseberg model:,Work in the regime JH JK,Determine the ground state of the q

    13、uantum antiferromagnet defined by JH, and then couple to conduction electrons by JK,Ground states of quantum antiferromagnets,Begin with magnetically ordered states, and consider quantum transitions which restore spin rotation invariance,Two classes of ordered states:,(A) Collinear spins,(B) Non-col

    14、linear spins,(A) Collinear spins, bond order, and confinement,N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).,(A) Collinear spins, bond order, and confinement,Bond-ordered state,N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).,State of conduction electrons,Perturbation theory in J

    15、K is regular and so this state will be stable for finite JK,However, because nf=2 (per unit cell of ground state) nT= nf+ nc= nc(mod 2), and Luttingers theorem is obeyed.,At JK= 0 the conduction electrons form a Fermi surface on their own with volume determined by nc,FL state with bond order,(B) Non

    16、-collinear spins, deconfined spinons, Z2 gauge theory, and topological order,Solve constraints by writing:,Other approaches to a Z2 gauge theory: R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991); S. Sachdev and M. Vojta, J. Phys. Soc. Jpn 69, Suppl. B, 1 (2000). X. G. Wen, Phys. Rev. B 44, 26

    17、64 (1991). T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000). R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2002). L. B. Ioffe, M.V. Feigelman, A. Ioselevich, D. Ivanov, M. Troyer and G. Blatter, Nature 415, 503 (2002).,Vortices associated with p1(S3/Z2)=Z2,S3,(A) Nort

    18、h pole,(B) South pole,x,y,(A),(B),Can also consider vortex excitation in phase without magnetic order, : vison,A paramagnetic phase with vison excitations suppressed has topological order. Suppression of visons also allows za quanta to propagate these are the spinons.,State with spinons must have to

    19、pological order,State of conduction electrons,Perturbation theory in JK is regular, and topological order is robust, and so this state will be stable for finite JK,So volume of Fermi surface is determined by (nT -1)= nc(mod 2), and Luttingers theorem is violated.,At JK= 0 the conduction electrons fo

    20、rm a Fermi surface on their own with volume determined by nc,The FL* state,Outline Kondo lattice models Doniachs phase diagram and its quantum critical point A new phase: FL* Paramagnetic states of quantum antiferromagnets: (A) Bond order, (B) Topological order. Lieb-Schultz-Mattis-Laughlin-Bonestee

    21、l-Affleck-Yamanaka- Oshikawa flux-piercing arguments Extended phase diagram and its critical points Conclusions,III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka Oshikawa flux-piercing arguments,III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck- Yamanaka-Oshikawa flux-piercing arguments

    22、,Lx,F,M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000).,Unit cell ax , ay. Lx/ax , Ly/ay coprime integers,M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000).,Effect of flux-piercing on a topologically ordered quantum paramagnet,N. E. Bonesteel, Phys. Rev. B 40, 8954 (1989). G. Misguich, C. Lhuillier, M. Mam

    23、brini, and P. Sindzingre, Eur. Phys. J. B 26, 167 (2002).,1,2,3,Lx-1,Lx-2,Lx,F,Effect of flux-piercing on a topologically ordered quantum paramagnet,N. E. Bonesteel, Phys. Rev. B 40, 8954 (1989). G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre, Eur. Phys. J. B 26, 167 (2002).,1,2,3,Lx-1,Lx

    24、-2,Lx,vison,Flux piercing argument in Kondo lattice,Shift in momentum is carried by nT electrons, where,nT = nf+ nc,In topologically ordered, state, momentum associated with nf=1 electron is absorbed by creation of vison. The remaining momentum is absorbed by Fermi surface quasiparticles, which encl

    25、ose a volume associated with nc electrons.,Outline Kondo lattice models Doniachs phase diagram and its quantum critical point A new phase: FL* Paramagnetic states of quantum antiferromagnets: (A) Bond order, (B) Topological order. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka- Oshikawa flu

    26、x-piercing arguments Extended phase diagram and its critical points Conclusions,IV. Extended phase diagram and its critical points,IV. Extended T=0 phase diagram for the Kondo lattice,JK / t,FL,SDW,Magnetic frustration,FL*,SDW*,Hertz Gaussian paramagnon theory,Quantum criticality associated with the

    27、 onset of topological order described by interacting gauge theory. (Speaking loosely TK vanishes along this line),* phases have spinons with Z2 (d=2,3) or U(1) (d=3) gauge charges, and associated gauge fields.Fermi surface volume does not distinguish SDW and SDW* phases.,Because of strong gauge fluc

    28、tuations, U(1)-FL* may be unstable to U(1)-SDW* at low temperatures.Only phases at T=0: FL, SDW, U(1)-SDW*.,IV. Extended T=0 phase diagram for the Kondo lattice,JK / t,FL,SDW,Magnetic frustration,SDW*,SDW*,Hertz Gaussian paramagnon theory,Quantum criticality associated with the onset of topological

    29、order described by interacting gauge theory. (Speaking loosely TK vanishes along this line),U(1) fractionalization (d=3),Because of strong gauge fluctuations, U(1)-FL* may be unstable to U(1)-SDW* at low temperatures.Only phases at T=0: FL, SDW, U(1)-SDW*. Quantum criticality dominated by a T=0 FL-F

    30、L* transition.,U(1) fractionalization (d=3),Mean-field phase diagram,C/T ln(1/T),(cf. A. Georges),Strongly coupled quantum criticality with a topological or spin-glass order parameter,Order parameter does not couple directly to simple observables,Dynamic spin susceptiblity,Non-trivial universal scal

    31、ing function which is a property of a bulk d-dimensional quantum field theory describing “hidden” order parameter.,Superconductivity is generic between FL and Z2 FL* phases.,JK / t,FL,SDW,Magnetic frustration,FL*,SDW*,Hertz Gaussian paramagnon theory,Superconductivity,Z2 fractionalization,Z2 fractio

    32、nalization,Pairing of spinons in small Fermi surface state induces superconductivity at the confinement transition,Small Fermi surface state can also exhibit a second-order metamagnetic transition in an applied magnetic field, associated with vanishing of a spinon gap.,FL*,FL,Mean-field phase diagram,Conclusions,New phase diagram as a paradigm for clean metals with local moments. Topologically ordered (*) phases lead to novel quantum criticality.New FL* allows easy detection of topological order by Fermi surface volume,


    注意事项

    本文(T. Senthil (MIT)Subir SachdevMatthias Vojta (Karlsruhe).ppt)为本站会员(orderah291)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开