第14章 常微分方程的MATLAB求解.ppt
《第14章 常微分方程的MATLAB求解.ppt》由会员分享,可在线阅读,更多相关《第14章 常微分方程的MATLAB求解.ppt(13页珍藏版)》请在麦多课文档分享上搜索。
1、第14章 常微分方程的MATLAB求解,编者,Outline,14.1 微分方程的基本概念 14.2 几种常用微分方程类型 14.3 高阶线性微分方程 14.4 一阶微分方程初值问题的数值解 14.5 一阶微分方程组和高阶微分方程的数值解 14.6 边值问题的数值解,14.1 微分方程的基本概念,微分方程:一般的,凡表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程。 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶 微分方程的解:找出这样的函数,把这函数代入微分方程能使该方程成为恒等式。这个函数就叫做微分方程的解。 微分方程的通解:
2、如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。 初始条件:设微分方程中的未知函数为 ,如果微分方程是一阶的,通常用来确定任意常数的条件是 时, 或写成 其中 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的条件是其中 和 都是给定的值,上述这种条件叫做初始条件。 确定了通解中的任意常数以后,就得到微分方程的特解。求微分方程 满足初始条件 的特解是这样一个问题,叫做一阶微分方程的初值问题,记作微分方程的解的图形是一条曲线,叫做微分方程的积分曲线。,14.2 几种常用微分方程类型,1.可分离变量的微分方程 一般的,如果一个一阶微分方程能
3、写成 的形式,就是说,能把微分方程写成一端只含 的函数和 ,另一端只含 的函数和 ,那么原方程就称为可分离变量的微分方程。 2.齐次方程 如果一阶微分方程可化成 的形式,那么就称这方程为齐次方程。 3.一阶线性微分方程 线性方程:方程 叫做一阶线性微分方程因为 它对于未知函数y 及其导数是一次方程。如果 , 则上述方程称为齐次的;如果 , 则上述方程称为非齐次的。为了求出非齐次线性方程的解,我们先把 换成 零而写出方程 该方程叫做对应于非齐次线性方程的齐次线性方程。齐次线性方程的通解为 非齐次线性方程的通解为伯努利方程:方程 叫做伯努利(Bernoulli)方程。当 时,该方程是线性微分方程,
4、当 时,该方程不是线性的,但是通过变量的替换,便可把它化为线性的,4.可降阶的高阶微分方程型的微分方程:微分方程 的右端仅含有自变量 x ,容易看出,只要把 作为新的未知函数,那么微分方程 即化为新未知函数 的一 阶微分方程,两边积分,就得到一个 阶的微分方程 同理可得依此法继续进行,接连积分 n次,便得到方程 的含有 n 个任意常数的通解。型的微分方程:方程的右端不显含未知函数 y。如果我们设 ,那么因此,方程 就成为 ,这是一个关于变量 的一阶微分方程 ,设其通解为 ,又 因此又得到一个一阶微分方程对它进行积分,便得到方程 的通解为型的微分方程:方程中不显含自变量x ,为了求出它的解,我们
5、令 ,并利用复合函数求导法则把 化为对 的导数,即这样,方程 就成为 这是一个关于变量 的一阶微分方程,设它的通解为 分离变量并积分,便得方程 的通解为,14.3 高阶线性微分方程,1.线性微分方程解的结构 在 n 阶微分方程 中, 若 是 的一次有理整式,则称此方程为 n 阶线性微分方程。一般形式可写成:线性微分方程解的结构定理:如果 是方程 的n个线性无关的解,则该方程的通解为 其中 是任意常数。设 是方程 的一个特解, 是对应的齐次线性方程的通解,则 是上述方程的通解。若 和 分别是方程 与 的特解,则是方程 的特解 2.常系数线性微分方程的MATLAB符号求解MATLAB中提供了dso
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 14 微分方程 MATLAB 求解 PPT
