高中数学圆锥曲线圆锥曲线的性质对比+知识点梳理.doc
《高中数学圆锥曲线圆锥曲线的性质对比+知识点梳理.doc》由会员分享,可在线阅读,更多相关《高中数学圆锥曲线圆锥曲线的性质对比+知识点梳理.doc(10页珍藏版)》请在麦多课文档分享上搜索。
1、 - 1 - 高考数学圆锥曲线部分知识点梳理 一、 方程的曲线: 在平面直角坐标系中,如果某曲线 C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程 f(x,y)=0 的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。 点与曲线的关系:若曲线 C的方程是 f(x,y)=0,则点 P0(x0,y0)在曲线 C上 f(x0,y 0)=0;点 P0(x0,y0)不在曲线 C上 f(x0,y0) 0。 两条曲线的交点:若曲线 C1, C2的方程分别为 f1(x,y)=0,f2
2、(x,y)=0,则点 P0(x0,y0)是 C1, C2的交点 0),(0),(002001 yxf yxf 方程组有 n个不同的实数解,两条曲线就有 n个不同的交点;方程组没有实数解,曲线就没有交点。 二、圆: 1、定义: 点集 M OM =r,其中定点 O为圆心,定长 r为半径 . 2、方程: (1)标准方程: 圆心在 c(a,b),半径为 r的圆方程是 (x-a)2+(y-b)2=r2 圆心在坐标原点,半径为 r的圆方程是 x2+y2=r2 (2)一般方程:当 D2+E2-4F 0时,一元二次方程 x2+y2+Dx+Ey+F=0 叫做圆的一般方程,圆心为 )2,2( ED 半径是2 42
3、2 FED 。配方,将方程 x2+y2+Dx+Ey+F=0 化为 (x+2D)2+(y+2E)2=4 4F-ED22 当 D2+E2-4F=0时,方程表示一个点 (-2D,-2E); 当 D2+E2-4F 0时,方程不表示任何图形 . ( 3) 点与圆的位置关系 已知圆心 C(a,b),半径为 r,点 M的坐标为 (x0,y0),则 MC r 点 M在圆 C内, MC =r 点 M在圆 C上, MC r 点 M在圆 C内,其中 MC = 2020 b)-(ya)-(x 。 ( 4) 直线和圆的位置关系:直线和圆有相交、相切、相离三种位置关系:直线与圆相交 有两个公共点;直线与圆相切 有一个公共
4、点;直线与圆相离 没有公共点。 直线和圆的位置关系的判定: (i)判别式法 ; (ii)利用圆心 C(a,b)到直线 Ax+By+C=0 的距离22 BACBbAad 与半径 r的大小关系来判定。 三、圆锥曲线的统一定义: 平面内的动点 P(x,y)到一个定点 F(c,0)的距离与到不通过这个定点的一条定直线 l的距离之 比是一个常数 e(e 0),则动点的轨迹叫做圆锥曲线。其中定点 F(c,0)称为焦点,定直线 l称为准线,正常数 e称为离心率。当 0 e 1时,轨迹为椭圆;当 e=1时,轨迹为抛物线;当 e 1时,轨迹为双曲线。 四、椭圆、双曲线、 抛物线: 椭圆 双曲线 抛物线 定义 1
5、到两定点 F1,F2的距离之和为定值 2a(2a|F1F2|)的点的轨迹 2与定点和直线的距离之比为定值 e的点的轨迹 .( 01) 与定点和直线的距离相等的点的轨迹 . - 2 - 轨迹条件 点集: (M MF1+ MF2=2a, F 1F2 2a 点集: M MF1 - MF2 . = 2a, F2F2 2a. 点集 M MF =点 M到直线 l的距离 . 图形 方 程 标准方程 12222 byax ( ba 0) 12222 byax (a0,b0) pxy 22 参数方程 为离心角)参数 (s inc os by ax 为离心角)参数 (tans ec by ax pty ptx 2
6、2 2 (t为参数 ) 范围 axa, byb |x| a, yR x0 中心 原点 O( 0, 0) 原点 O( 0, 0) 顶点 (a,0), ( a,0), (0,b) , (0, b) (a,0), ( a,0) (0,0) 对称轴 x轴, y轴; 长轴长 2a,短轴长 2b x轴, y轴 ; 实轴长 2a, 虚轴长 2b. x轴 焦点 F1(c,0), F2( c,0) F1(c,0), F2( c,0) )0,2( pF准 线 x= ca2 准线垂直于长轴,且在椭圆外 . x=ca2 准线垂直于实轴,且在两顶点的内侧 . x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等 .焦距
7、 2c ( c= 22 ba ) 2c ( c= 22 ba ) 离心率 )10( eace)1( eacee=1 - 3 - 【备注 1】双曲线: 等轴双曲线:双曲线 222 ayx 称为等轴双曲线,其渐近线方程为 xy ,离心率 2e . 共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线 . 2222byax与 2222byax互为共轭双曲线,它们具有共同的渐近线: 02222 byax. 共渐近线的双曲线系方程: )0(2222 byax的渐近线方程为 02222 byax如果双曲线的渐近线为 0byax时,它的双曲线方程可设为 )0(2222 bya
8、x. 【备注 2】抛物线: ( 1)抛物线 2y =2px(p0)的焦点坐标是 (2p,0),准线方程 x=-2p,开口向右;抛物线 2y =-2px(p0)的焦点坐标是 (-2p,0),准线方程 x=2p,开口向左;抛物线 2x =2py(p0)的焦点坐标是 (0,2p),准线方程 y=-2p,开口向上; 抛物线 2x =-2py( p0)的焦点坐标是( 0,-2p),准线方程 y=2p,开口向下 . ( 2)抛物线 2y =2px(p0)上的点 M(x0,y0)与焦点 F的距离20 pxMF ;抛物线 2y =-2px(p0)上的点 M(x0,y0)与焦点 F的距离02 xpMF ( 3)
9、设抛物线的标准方程为 2y =2px(p0),则抛物线的焦点到其顶点的距离为2p,顶点到准线的距离2p,焦点到准线的距离为p. ( 4)已知过抛物线 2y =2px(p0)焦点的直线交抛物线于 A、 B两点,则线段 AB称为焦点弦,设 A(x1,y1),B(x2,y2),则弦长AB = 21 xx +p 或 2sin2 pAB (为直线 AB 的倾斜角 ), 221 pyy , 2,4 1221 pxAFpxx (AF 叫做焦半径 ). 五、坐标的变换: ( 1)坐标变换:在解析几何中,把坐标系的变换 (如改变坐标系原点的位置或坐标轴的方向 )叫做坐标变换 .实施坐标变换时,点的位置,曲线的形
10、状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程 . ( 2)坐标轴的平移:坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平 移,简称移轴。 ( 3)坐标轴的平移公式:设平面内任意一点 M,它在原坐标系 xOy中的坐标是 9x,y),在新坐标系 x O y中的坐标是 ),( yx .设新坐标系的原点 O在原坐标系 xOy 中的坐标是 (h,k),则 kyyhxx 或 kyyhxx 叫做平移 (或移轴 )公式 . ( 4) 中心或顶点在 (h,k)的圆锥曲线方程见下表: - 4 - 方 程 焦 点 焦 线 对称轴 椭圆 22h)-(xa+22k)-(yb=1
11、( c+h,k) x=ca2 +h x=h y=k 22h)-(xb+22k)-(ya=1 (h, c+k) y=ca2 +k x=h y=k 双曲线 22h)-(xa-22k)-(yb=1 ( c+h,k) x=ca2 +k x=h y=k 22k)-(ya-22h)-(xb=1 (h, c+h) y=ca2 +k x=h y=k 抛物线 (y-k)2=2p(x-h) (2p+h,k) x=-2p+h y=k (y-k)2=-2p(x-h) (-2p+h,k) x=2p+h y=k (x-h)2=2p(y-k) (h, 2p+k) y=-2p+k x=h (x-h)2=-2p(y-k) (h
12、,- 2p+k) y=2p+k x=h 六、椭圆的常用结论: 1. 点 P处的切线 PT平分 PF1F2在点 P处的外角 . 2. PT平分 PF1F2在点 P处的外角,则焦点在直线 PT上的射影 H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 . 3. 以焦点弦 PQ为直径的圆必与对应准线相离 . 4. 以焦点半径 PF1为直径的圆必与以长轴为直径的圆内切 . 5. 若0 0 0( , )P x y在椭圆 221xyab上,则过0P的椭圆的切线方程是 00221x x y yab. 6. 若0 0 0( , )P x y在椭圆 221xyab外,则过0P作椭圆的两条切线切点为 P1、 P2
13、,则切点弦 P1P2的直线方程是 00221x x y yab. 7. 椭圆 221xyab(a b 0)的左右焦点分别为 F1, F 2,点 P为椭圆上任意一点12F PF ,则椭圆的焦点角形的面积为122 t a n 2F P FSb . 8. 椭圆 221xyab( a b 0)的焦半径公式10|M F a ex,20|M F a ex(1( ,0)Fc,2( ,0)Fc 00( , )M x y). 9. 设过椭圆焦点 F作直线与椭圆相交 P、 Q两点, A为椭圆长轴上一个顶点,连结 AP 和 AQ分别交相应于焦点 F的椭圆准线于 M、- 5 - N两点,则 MF NF. 10. 过椭
14、圆一个焦点 F的直线与椭圆交于两点 P、 Q, A1、 A2为椭圆长轴上的顶点, A1P和 A2Q交于点 M, A2P和 A1Q交于点 N,则 MF NF. 11. AB是椭圆 221xyab的不平行于对称轴的弦, M ),(00 yx为 AB 的中点,则 22O M A Bbkk a ,即0202 ya xbK AB 。 12. 若0 0 0( , )P x y在椭圆 221xyab内,则被 Po所平分的中点弦的方程是 220 0 0 02 2 2 2x x y y x ya b a b ; 【推论】: 1、若0 0 0( , )P x y在椭圆 221xyab内,则过 Po 的弦中点的轨迹
15、方程是 22 002 2 2 2x x y yxya b a b 。椭圆 221xyab( a b o)的两个顶点为1( ,0)Aa,2( ,0)Aa,与 y轴平行的直线交椭圆于 P1、 P2时 A1P1与 A2P2交点的轨迹方程是 221xyab. 2、过椭圆 221xyab(a 0, b 0)上任一点00( , )A x y任意作两条倾斜角互补的直线交椭圆于 B,C 两点,则直线 BC有定向且2 02 0BCbxkay(常数) . 3、若 P为 椭圆 221xyab( a b 0)上异于长轴端点的任一点 ,F1, F 2是焦点 , 12PF F , 21PF F ,则t a n t22ac
16、 coac . 4、设椭圆 221xyab( a b 0)的两个焦点为 F1、 F2,P(异于长轴端点)为椭圆上任意一点,在 PF1F2中,记12F PF , 12PF F ,12F F P ,则有 s i ns i n s i n c ea. 5、若椭圆 221xyab( a b 0)的左、右焦点分别为 F1、 F2,左准线为 L,则当 0 e 21 时,可在椭圆上求一点 P,使得 PF1是 P到对应准线距离 d与 PF2的比例中项 . 6、 P为椭圆 221xyab( a b 0)上任一点 ,F1,F2为二焦点, A为椭圆内一定点,则2 1 12 | | | | | | 2 | |a A
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 圆锥曲线 性质 对比 知识点 梳理 DOC
