2014届广东省惠州市高三4月模拟考试文科数学试卷与答案(带解析).doc
《2014届广东省惠州市高三4月模拟考试文科数学试卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2014届广东省惠州市高三4月模拟考试文科数学试卷与答案(带解析).doc(16页珍藏版)》请在麦多课文档分享上搜索。
1、2014届广东省惠州市高三 4月模拟考试文科数学试卷与答案(带解析) 选择题 函数 的定义域为( ) A B C D 答案: A 试题分析:由二次根式的定义可得 ,所以函数 的定义域为,故选 A. 考点:定义域 一次不等式 设命题 :函数 的图象向左平移 个单位长度得到的曲线关于 轴对称; 命题 :函数 在 上是增函数则下列判断错误的是( ) A 为假 B 为真 C 为假 D 为真 答案: D 试题分析:命题 p,函数 的图像向左平移 个单位长度得到的函数式为 ,因为 不是偶函数 ,所以不关于 y轴对称 ,即命题 p为假命题 .命题 q,如图作出 的函数图像可以发现该函数在区间 上是单调递减的
2、 ,在区间 是单调递增的 ,所以命题 q也是假命题 ,根据真值表可得 为假命题 ,所以 D是错误的 ,故选 D 考点:命题真假 三角函数 指数函数域图像变化 真值表 已知 ,则 等于( ) A B C D 答案: C 试题分析:观察 的通项公式不难发现 ,则,所以 ,故选 C. 考点:数列 设 是两条不同的直线, 是两个不同的平面。下列四个命题正确的是( ) A B C D 答案: A 试题分析:根据面面平行的定义可得两个面平行 ,任意一个面内的直线一定平行另外一个面 ,所以根据面面平行的性质可得选项 A是正确的 .故选 A. 考点:面面平行的性质 已知椭圆 的长轴在 轴上,焦距为 ,则 等于
3、 ( ) A B C D 答案: A 试题分析:因为焦距为 4,所以 ,因为椭圆 的焦点在x轴上 ,所以 ,根据 ,故选 A. 考点:椭圆 焦点 用二分法求方程 的近似解,可以取的一个区间是( ) A B C D 答案: C 试题分析:等式 可以变为 ,则方程 的根为函数 的零点 ,分别带入点 可得,故根据零点存在性定理可得在区间 内有零点 ,所以方程 的根在区间内 ,故选 C 考点:零点存在性定理 如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果 直角三角形的直角边长为 ,那么这个几何体的体积为 ( ) A BC D 答案: D 试题分析:根据该几何体的三视图可以判断
4、该几何体为三棱锥 ,且根据正视图可以知道三棱锥的高 ,根据俯视图可以知道三棱锥的底面为等腰直角三角形 ,则底面面积为 ,根据三棱锥的体积计算公式可得 ,故选D. 考点:三视图 三棱锥 是虚数单位,若 ,则 等于( ) A B C D答案: B 试题分析:有题可得 ,根据复数模的计算公式可得,故选 B. 考点:复数乘法 复数的模 不等式 的解集为( ) A B C D 答案: B 试题分析:分式不等式 ,所以不等式的解集为 ,故选 B. 考点:分式不等式 已知向量 ,则向量 的坐标为( ) A B C D 答案: D 试题分析:因为 ,则根据向量加法的坐标运算可得,故选 D. 考点:向量的坐标运
5、算 填空题 如右图所示, 是圆 外一点,过 引圆 的两条割线 答案: 试题分析:因为 为圆 O的两条割线 ,所以由割线定理可得考点:割线定理 在平面直角坐标系下,曲线 ,曲线.若曲线 有公共点,则实数 的取值范围是_ 答案: 试题分析:曲线 消元化为普通方程可得 ,即为一条直线 ,曲线化为普通方程可得 ,即为圆 ,因为圆与直线有公共点 ,所以圆心到直线的距离小于或等于半径 ,即 ,故填. 考点:参数方程 圆与直线的位置关系 设一直角三角形的两条直角边长均是区间 上的任意实数,则斜边长小于 的概率为 答案: 试题分析:不妨设直角三角形的两条直角边长为 ,则 表示的区域如图所示为一个边长为 1的正
6、方形 ,即面积 ,根据勾股定理可得斜边长,则根据题意可得 ,即点 在以为圆心 ,半径为 的圆内 ,则即在园内又在正方形区域内的面积为,则根据几何概型的概率计算公式可得 ,故填. 考点:几何概型 勾股定理 程序框图(即算法流程图)如下图所示,其输出结果是 答案: 试题分析:运行该程序框图如下 故填 127 考点:程序框图 已知点 满足 ,则 的最小值是 答案: 试题分析:根据线性规划的知识画出 不等式 的可行域如图所示 ,则目标函数 在交点 处取得最小值为 ,故填 . 考点:线性规划 解答题 已知函数 ( 1)求 的值; ( 2)若 ,且 ,求 . 答案: (1) (2) 试题分析: (1)直接
7、把 带入函数 的式 ,再根据 即可得到的值 . (2)利用余弦的降幂公式化简 ,再利用关于 的辅助角公式即可化简函数 的式得到 ,把 带入函数,利用正弦的和差角公式展开 ,根据题目已知 ,再根据正余弦之间的关系与 为第二象限角 (即角 的余弦值为负数 )即可求的 ,把 的值带入 的展开式即可得到 的值 . 试题: (1) 2分 (2) 4分 6分 8分 10分 因为 ,且 ,所以 11分 所以 12分 考点:三角函数辅助角公式降幂公式正余弦关系 某校高三( 1)班共有 名学生,他们每天自主学习的时间全部在 分钟到 分钟之间,按他们学习时间的长短分 个组统计 ,得到如下频率分布表: 组别 分组
8、频数 频率 第一组 第二组 第三组 第四组 第五组 ( 1)求分布表中 , 的值; ( 2)王老师为完成一项研究,按学习时间用分层抽样的方法从这 名学生中抽取 名进行研究,问应抽取多少名第一组的学生? ( 3)已知第一组学生中男、女生人数相同,在( 2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少? 答案: (1) (2) (3) 试题分析: (1)第二组的频数已知 ,则根据根据频率的计算公式 (频率 =频数除以总数 )即可得到频率 s,再利用各组频率之和为 1,即可计算得到第五组的频率 t. (2)根据抽样的原理 ,即在抽样过程中 ,保持每个个体被抽到的可能性相同 ,则要在40人
9、中抽去 20人 ,即抽取的比列为 0.5,在第一组学生中抽取的比列也为 0.5,即需要 2人 . (3)由 (2)可以知道为 4选 2,首先对 4个人进行编号 ,然后列出 4抽 2的所有的基本事件 ,并计算得到满足抽取的两个人一个为女生 ,一个为男生的基本事件数 ,根据古典概型的概率计算公式即可得到相应的概率 . 试题: ( 1) , 4分 ( 2)设应抽取 名第一组的学生,则 得 故应抽取 2名第一组的学生 6分 ( 3)在( 2)的条件下应抽取 2名第一组的学生,记第一组中 2名男生为 ,2名女生为 按时间用分层抽样的方法抽取 2名第一组的学生共有 种结果,列举如下: 9分 其中既有男生又
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 广东省 惠州市 模拟考试 文科 数学试卷 答案 解析
