ASTM F2059-17 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask.pdf
《ASTM F2059-17 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask.pdf》由会员分享,可在线阅读,更多相关《ASTM F2059-17 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F2059 17Standard Test Method forLaboratory Oil Spill Dispersant Effectiveness Using theSwirling Flask1This standard is issued under the fixed designation F2059; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year
2、of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the procedure to determine theeffectiveness of oil spill dispersants on various oils in the
3、laboratory. This test method is not applicable to other chemicalagents nor to the use of such products or dispersants in openwaters.1.2 This test method covers the use of the swirling flask testapparatus and does not cover other apparatuses nor are theanalytical procedures described in this report d
4、irectly appli-cable to such procedures.1.3 The test results obtained using this test method areintended to provide baseline effectiveness values used tocompare dispersants and oil types under conditions analogousto those used in the test.1.4 The test results obtained using this test method areeffect
5、iveness values that should be cited as test values derivedfrom this standard test. Dispersant effectiveness values do notdirectly relate to effectiveness at sea or in other apparatuses.Actual effectiveness at sea is dependant on sea energy, oil state,temperature, salinity, actual dispersant dosage,
6、and amount ofdispersant that enters the oil.1.5 The decision to use or not use a dispersant on an oilshould not be based solely on this or any other laboratory testmethod.1.6 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.7 T
7、his standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.8 This internation
8、al standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committ
9、ee.2. Summary of Test Method2.1 Dispersant is pre-mixed with oil and placed on water ina test vessel. The test vessel is agitated on a moving tableshaker. At the end of the shaking period, a settling period isspecified and then a sample of water taken. The oil in the watercolumn is extracted from th
10、e water using a dichloromethanesolvent and analyzed using gas chromatography.2.2 The extract is analyzed for oil using a gas chromato-graph equipped with a flame ionization detector, (GC-FID).Quantification is by means of the internal standard method.Effectiveness values are derived by comparison wi
11、th a cali-brated set of effectiveness values obtained at the same time andby the same method.3. Significance and Use3.1 A standard test is necessary to establish a baselineperformance parameter so that dispersants can be compared, agiven dispersant can be compared for effectiveness on differentoils,
12、 and at different oil weathering stages, and batches ofdispersant or oils can be checked for effectiveness changeswith time or other factors.3.2 Dispersant effectiveness varies with oil type, sea energy,oil conditions, salinity, and many other factors. Test resultsfrom this test method form a baseli
13、ne, but are not to be takenas the absolute measure of performance at sea. Actual fieldeffectiveness could be more or less than this value.3.3 Many dispersant tests have been developed around theworld. This test has been developed over many years usingfindings from world-wide testing to use standardi
14、zedequipment, test procedures, and to overcome difficulties notedin other test procedures.4. Interferences and Sources of Error4.1 Interferences can be caused by contaminants, particu-larly residual oil or surfactants in solvents, on glassware, andother sample processing apparatus that lead to discr
15、ete artifacts1This test method is under the jurisdiction of ASTM Committee F20 onHazardous Substances and Oil Spill Response and is the direct responsibility ofSubcommittee F20.13 on Treatment.Current edition approved April 15, 2017. Published April 2017. Originallyapproved in 2000. Last previous ed
16、ition approved in 2012 as F2059 06(2012)1.DOI: 10.1520/F2059-17Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization establ
17、ished in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1or elevated baselines in gas chromatograms. All glasswaremust be thoroughly cleaned. The cleaning process
18、includesrinsing with dichloromethane to remove the oil, followed byrinsing three times each with tap water, purified water (reverseosmosis), and acetone. Once cleaned, precautions must betaken to minimize contact of the glassware with surfactants toprevent undesired interferences.4.2 Dispersant effe
19、ctiveness is very susceptible to energylevels. Table top shakers generally start and stop slowly.Shakers that start motion rapidly and stop suddenly impart ahigh energy to the system and thus cause more dispersion thanwould be the case with a normal shaker. Furthermore, thisvariation would not be re
20、peatable. The shaker table usedshould be observed for rapid movements or stops to ensure thatit is usable for these tests. The rotational speed of the shakershould be checked with a tachometer every week.4.3 The Erlenmeyer flasks used in this test are tapered andthe energy level varies with the amou
21、nt of fill.4.4 The output is highly sensitive to the volume of oil,water, and extractant delivered. All pipets and dispensersshould be calibrated frequently and verified daily.4.5 The use of positive displacement pipets is mandatory forall controlled volumes of microlitre quantities. Use of volumedi
22、splacement pipets will result in erroneous results due to theviscosity of the dispersants and oils, the variable viscosity ofthe oils to be tested (some semi-solid), and the density ofdichloromethane.4.6 The order of addition of the dispersant and oil haseffects on the accuracy of results, as the di
23、spersant may interactwith the vessel walls if added first, thereby reducing thequantity available in the premix. It is therefore important to addoil to the vessel first, and add the dispersant directly to the oil.Asecond addition of oil is suggested simply because it is easierto control a large volu
24、me of oil than a minute volume ofdispersant when attempting to achieve a specific ratio of 25:1.4.7 Following surfactant addition, vigorous mixing is re-quired to thoroughly homogenize the sample. Sharp, manualstrokes are suggested for light oils, while very heavy oils mayrequire stirring with a cle
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTM F2059 17 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask

链接地址:http://www.mydoc123.com/p-287178.html