ACI 364 2T-2008 Increasing Shear Capacity Within Existing Reinforced Concrete Structures《提高现有钢筋水泥结构的抗剪承载能力》.pdf
《ACI 364 2T-2008 Increasing Shear Capacity Within Existing Reinforced Concrete Structures《提高现有钢筋水泥结构的抗剪承载能力》.pdf》由会员分享,可在线阅读,更多相关《ACI 364 2T-2008 Increasing Shear Capacity Within Existing Reinforced Concrete Structures《提高现有钢筋水泥结构的抗剪承载能力》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、1IncreasIng shear capacIty wIthIn exIstIng reInforced concrete structuresKeywords: external steel reinforcement; fiber-reinforced polymer; section enlargement; shear reversal; shear strengthening.IntroductionRehabilitation projects often involve the need to increase the load-carrying capacity of mem
2、bers within existing concrete structures that are deficient due to increased load demand associated with change of use, deficiencies in the original design or construction, or deterioration. Such strengthening often includes increasing shear capacity. Shear strengthening may also be necessary when a
3、 structure requires nullxural strengthening to ensure a ductile failure mechanism in seismic loading situations. nullhe accessibility difficulties normally encountered in concrete structures, as well as general lacnullof design standards, may lead to building official limitations on what strengtheni
4、ng may be accepted.Questionnullat options are available to increase the shear capacity of members within existing reinforced concrete structuresnullAnswernulle following are descriptions and some examples of various tech -niques for shear strengthening. nullote that, unless indicated, the shear stre
5、ngthening measures described are specific to nonseismic applica-tions. nullapter nullof nullnullnullnull-null nullnullnullnull nullommittee nullnullnull nullnullnullnullnull and nullnullnull nullnullnull.nullR-nullnull, nullnullnull.nullR-nullnull, and nullnullnullR-nullnull nullnullnullnull nullomm
6、ittee null nullnullnullnull, nullnullnullnull; nullnullnull nullommittee nullnullnull nullnullnullnullnull provide additional information on structural strengthening. nulll shear strengthening should be performed under the guidance of a licensed engineer familiar with the selected technique.null Ext
7、ernal steel reinforcementnullhe shear capacity of concrete members, such as columns, beams, slabs, and shear walls, can be increased by attaching steel plates nullig. null to the concrete surface with epoxy bonding, mechanical anchorage, or both. Steel rods or rein-forcing bars, either post-tensione
8、d or non-post-tensioned, are another form of external steel shear reinforcement that is well suited to beams nullig. null;null. Section enlargementnullSection enlargement can be accomplished by using concrete, shotcrete, reinforced concrete, or mortar that is bonded to the concrete element nullnulli
9、g. nullnull. nullor example, columns can be strength-ened by using jacnullets nullnullig. null and nullnull, beams by increasing the section, shear walls by increasing the wall thicnullness, and ribbed slabs by filling the open spaces between the ribs. nullhe columns in nullig. null and null were st
10、rengthened to increase the vertical shear capacity of the beam seat, and not the column shear associated with moment interaction;null. Internal steel and FRP reinforcementnullnulldditional steel or fiber-rein-forced polymer nullnullRnullnull reinforcement can be installed by drilling holes, insertin
11、g steel or nullRnull dowels, and grouting nullnullig. nullnull. Several grouting mate-rials have been used successfully to bond the dowels to the concrete;null Near-surface-mounted reinforcementnullear-surface-mounted rein -forcement nullSnullnullinvolves inserting steel or nullnullrods or reinforci
12、ng bars into grooves cut into the surface of the concrete section. nullhe grooves are typically not deeper than the existing reinforcement cover Fig. 1External reinforcement with steel plate.Fig. 2External shear reinforcement with steel rods or reinforcing nullrs.ACI 364.2T-08nullechNoteAmerican Con
13、crete Institute Copyrighted Materialnullnull.concrete.org2 INCREASING SHEAR CAPACITY WITHIN EXISTING REINFORCED CONCRETE STRUCTURES (ACI 364.2T-08)dimension. nullhe grooves are then filled with a polymer or grout to provide compatibility nullthat is, load transfernull of the reinforcement with the c
14、oncrete. nullhe advantages of this method are easy access, limited chance of disturbing existing reinforcing bar as compared with internal steel reinforcement, and increased protection and bonded surface area of the reinforcement as compared with the use of external shear rein-forcement;null Supplem
15、ental memnullrs nullupplemental structural members, such as posts or beams, can be added to reduce shear stress. nullen architectural constraints allow, this can often be a cost-effective and practical solution; andnull. FRP plates or stripsnullnullRnull materials may be used as either exter-nally b
16、onded plates or strips. nullhe advantage of using strips is that they do not entrap moisture in the structure and more closely resemble conventional shear reinforcement. nullhe advantages of using plates that cover the entire member include the additional effect of shell action, although not usually
17、 included in design, and the ability to use bidirectional fibers to resist shear reversals. nulllthough fibers positioned at an angle may be optimal, a nearly equivalent amount of fibers are often required as compared with vertically arranged fibers when shear reversals are considered. nullhe nullRn
18、ull is typically bonded to the concrete with a structural-grade epoxy. nullhere are many forms of nullRnull suitable for shear strengthening, including fabric sheets impregnated with resin on site using a process called wet layup; preimpregnated sheets of fabric; and precured shapes, such as rods, a
19、nd nullat, null-shaped, and null-shaped plates. nullodified approaches are available nullnullnullnull nullommittee nullnullnull nullnullnullnullnull; however, research projects intended for both seismic and nonseismic applications have primarily focused on the nonuniformity of strains in adjacent nu
20、llRnull shear reinforcing elements at the intended design limit nullSchuman nullnullnullnull; nullong and nullecchio nullnullnullnull; nullarolin and nullnullljsten nullnullnullnullnull. nullt should also be noted that, along with seismic applications, research has shown that certain conditions, suc
21、h as at deep beams and negative moment regions, may require anchorage to obtain a measurable strengthening effect nullnullnullnull nullommittee nullnullnull nullnullnullnullnull. nullnchorage comes in many forms, including steel-bonded anchors with a bearing plate, bundled nullRnull fiber anchors th
22、at are integrated into the nullRnull shear reinforcement, fully wrapped sections, and ribbed inserts into the nullange region. nulln example of an external application is the wrap-ping of beams with carbon nullRnull nullnullnullRnullnull null-shaped strips nullnullig. nullnull; this is a good exampl
23、e of how nullRnull anchors can be integrated into the system with minimal visibility and optimum performance. nullultruded null-shaped plate stirrups nullnullig. nullnull are another form of externally bonded nullRnull shear strengthening.Discussionnullhe selection of the most suitable method for a
24、given application depends on many factors, includingnullnull Reason for strengthening nullnote that a majority of the methods will not prevent concrete cracnulls from forming; rather, they will limit the opening and propagation of shear cracnulls after cracnull forma-tion. nullf cracnull prevention
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ACI3642T2008INCREASINGSHEARCAPACITYWITHINEXISTINGREINFORCEDCONCRETESTRUCTURES 提高 现有 钢筋 水泥 结构 承载 能力 PDF

链接地址:http://www.mydoc123.com/p-1242836.html